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The World is Full of Dynamical Systems

robotics power grid chemical plants



What about dynamics that are hard to model?



The golden rule of modern machine learning

“If computer vision researchers spent all their time 
searching for the correct definition of a “cat” in 

2015, they would have made zero progress”           
— Terry Suh

*this perspective comes with numerous drawbacks, e.g. robustness
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“Improperness”Learning

Non-stochastic control at the intersection
Adaption

Youla, SLS

Convex 
Relaxations

Adaptive 
Control

SysID

Certainty 
Equivalence
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Core Concepts:

1. From optimal/robust control to regret

2. From “proper controller” to convex relaxation

3. Combine statistical learning with online optimization 
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Control As an Interactive Protocol
For each time t, 

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve xt+1 = f(xt, wt) + wt

Goal: For a given cost , make  as small as possible. c( ⋅ , ⋅ ) JT = ∑T
t=1 c(yt, ut)

what does this mean?
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Agent’s ‘Strategy’: A Control Policy
Otherwise: need control policy  mapping past observations to current input, 
to hedge over future uncertainty (and handle partial observation) 

π

environmentcontrol policy

yt

ut

w1:T

1. History Dependent: π : (y1:t, u1:t−1) → ut

2. State-Based π : (x1:t, u1:t−1) → ut

3. State-Feedback π : xt → ut
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Background: Control Cost
Recall: For a fixed dynamical system, the control cost of a policy  is π

JT(π; W) = ∑T
t=1 c(yt, ut)

1. xt+1 = f(xt, ut) + wt yt = g(xt) + et

2. ut = π(y1:t, u1:t−1)

3. W = (w1:T, e1:T)
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Background: The Optimal Control Problem
The optimal control problem is 

min
π

𝕆[JT(π; W)]

1. fixed W (open-loop planning/trajectory opt. )

2. random 𝔼W (stochastic optimal control)

3. worst-case supW∈… (robust control, e.g. the work of John Doyle)
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Summary

1. We introduced dynamical systems xt+1 = f(xt, ut) + wt yt = g(xt) + et

2. We formulated control as an interactive protocol, and described open- 
and closed-loop policies are agent strategies

3. We introduced the noise-dependent cost functional JT(π; W) = ∑T
t=1 c(yt, ut)

4. We briefly described classical noise models (fixed, random, worst-case).
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Background: Linear Dynamical System
Recall: A linear dynamical system is 

xt+1 = Axt + But + wt yt = Cxt + et

dynamics model observation model

Rationale: Local Taylor Approximation of Nonlinear Dynamics.
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Linear Quadratic Optimal Control

JT(π; W) = ∑T
t=1 c(yt, ut) c(y, u) = y⊤Qy + u⊤Ru

convex quadratic: Q, R ⪰ 0
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Classical Linear Quadratic Optimal Control

The  control problem:  
are i.i.d Gaussian (Kalman, LQG)

ℋ2 wt, et

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

The  control problem: 
 are worst case (Doyle)
ℋ∞

wt, et

Stochastic Control Robust Control
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Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥≤1

[JT(π; W)]

Theorem: If fully observed , state-feedback is optimal(yt ≡ xt)

yt

ut

ut = K⋆
t xt env.
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Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

Theorem: For general LQ control are linear dynamic policies are optimal:

yt

ut zt+1 = Aπzt + Bπyt

ut = Cπzt + Dπytenv.
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Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

Important Takeaway: Linear Quadratic Control Problems admit 
easy-to-express controllers.
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Beyond LQ Control

Challenge 1: If costs/constraints are no longer quadratic, optimal control is 
hard to describe, even if dynamics are linear. 

Challenge 2: Optimizing over feedback (static or dynamic) is non-
convex and can be computationally hard:

This is because, e.g. in full observation xt = ∑
s

(A + BK)t−s(Bus + ws)

Example (  control, Borelli ’03): ℓ1 c(y, u) = ∥y∥1 + ∥u∥2
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Beyond LQ Control

Insight: Optimization restricted to linear policies can be 
reparametrized to be convex if costs/constraints are convex

Powerful Observation: Youla-Kućera ’76, Zames ’81 (IO), Anderson et al. ’19 (SLS)

Challenges:  Direct optimization over feedback controllers can be hard, and 
exact optimal control laws can be hard to express.
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Summary

1. We introduced linear dynamical systems 
xt+1 = Axt + But + wt
yt = Cxt + et

2. We described the optimal control laws for linear-quadratic (LQ) control

3. We described computational difficulties beyond the LQ regime

4. We hinted at convex relaxations as a tool for efficient optimization.
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difficulty

i.i.d. (ℋ2) worst-case (ℋ∞)

something else?
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i.i.d. worst-case

Naively:  for every  minπ JT(π; W) W

“What  would we pick if we knew noise  in hindsight”π W
But of course: impossible, and leads to open loop control
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The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

i.i.d. worst-case

Naively:  for every  minπ JT(π; W) W

We will allow adversarial noise, but introduce regret to 
measure performance 
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Solution Concept: Regret

Fix a class of comparator policies  π ∈ Π

 for algorithm𝔸

JT (𝔸; W) = ∑T
t=1 c(y𝔸

t , u𝔸
t ) JT (π; W) = ∑T

t=1 c(yπ
t , uπ

t )

counterfactual cost under policy π ∈ Π
also called ‘learner’ or ‘agent’

“i’ve had a few”
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Solution Concept: Regret

Fix a class of comparator policies  π ∈ Π

JT (π; W)JT (𝔸; W) − min
π∈Π

RegT (𝔸; Π) =

excess cost of 
algorithm 

best-in-
hindsight 

(with full knowledge of disturbances)
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Fix a class of comparator policies  π ∈ Π

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Goal:  (vanishing regret as fraction of horizon) for all RegT = o(T) W
“competing with ”Π
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zero cost (perfect knowledge), but learner has  cost.Ω(T)
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Solution Concept: Regret

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Why a restricted comparator class?

1. If  is unrestricted, comparator cost is open-loop optimal plan.Π

2. We can restrict  to make optimization computationally efficient. Π
Key Idea: Optimizing over linear policies can efficient, even when optimal control is not. 
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For each time , t

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve xt+1 = f(xt, ut) + wt

Goal: make  . RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W) = o(T)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Linear Nonstochastic Control: Interactive Protocol

For each time , t

1. Nature picks noise  and a cost (wt, et) ct

2. Dynamics reveal yt = Cxt + et

3. Control agent picks ut

4. Dynamics evolve , suffer  xt+1 = Axt + But + wt ct(yt, ut)

Goal: make  . RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W) = o(T)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Summary

1. Non-stochastic control is an intermediate between stochastic and robust

2. We define regret to a restricted comparator class as a performance yardstick 
when noise is possibly adversarial 

3. We formulated the non-stochastic control protocol, including changing costs.
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Roadmap: Topics Covered

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics

3. Unknown Dynamics: System Identification

4. Optimal Regret: Leveraging Curvature

5. Open Problems / Hardness Results
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Warmup: Known System + Stable Dynamics

(Don’t worry: all will be relaxed)
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For t = 1,2,…
(convex 

parametrization)1.      defined in terms of  ut ← uMt
t M = (M[0], …, M[k])

(online gradient 
descent)

2.       where  is convexMt+1 ← Mt − ηt ∇F̃t(Mt) F̃t
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Theorem:  Gradient Perturbation Control (GPC) attains 

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πK; W) ≤ Õ( T)

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Includes optimal  controllersℋ2, ℋ∞ but non-convex!
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Tool 1: Convex Controller Parametrization
Define:  The Disturbance Feedback Control (DFC) parameterization:

Equivalent to the SLS Parametrization of (Anderson et al, 2019)

uM
t = ∑k

i=1 M[i]wt−i

this is implementable online with known dynamics: wt = xt+1 − (Axt + But)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Define:  The Disturbance Feedback Control (DFC) parameterization:
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Observation: The mapping from  is linear M → (xM

t , uM
t )

uM
t = ∑k

i=1 M[i]wt−i independent of past control inputs 

dynamics

wt

uM
t

xt

wt

Corollary: Assuming convex costs, mapping 
 is convex M → JT(πM; W) := ∑T

t=1 ct(xM
t , uM

t )
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Tool 1: Convex Controller Parametrization
Observation: The mapping from  is linear M → (xM

t , uM
t )

uM
t = ∑k

i=1 M[i]wt−i

dynamics

wt

uM
t

xt

wt

Corollary: By linearity of dynamics, mapping 
 is convex M → JT(πM; W) := ∑T

t=1 ct(xM
t , uM

t )

Therefore, in hindsight, we can 
efficiently optimize over controllers.

In learning theory, we call this improper learning.

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Informally: DFC Controllers are an improper relaxation of static feedback 
controllers

Theorem:  Consider any controller  such that  is  stable.K A + BK (C, ρ)
Then,   a DFC controller   with  s.t.∃ uM
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Corollary:  Let  denote all policies  makes s.t.  
is   stable. Then, the class  of all memory-k controllers with

Πfeedback π(x) = Kx A + BK
(C, ρ) Πgpc

uM
t = ∑k

i=0 M[i]wt−i ∑i ∥M[i]∥ ≤ O⋆(1)

suffices to optimize over Πgpc

inf
M

JT(Πgpc) − inf
K

JT(Πfeedback) ≤ O⋆(Tρk)

satisfies

(assuming 
Lipschitz 

costs)
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Tool 1: Convex Controller Parametrization
Summary

2. For bounded  of memory k:M inf
M

JT(Πgpc) − inf
K

JT(Πfeedback) ≤ O⋆(Tρk)

1. Efficient optimization mapping from 
 is convex M → JT(πM; W) := ∑T

t=1 ct(xM
t , uM

t )
dynamics

wt

uM
t

xt

wt
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Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

For times t = 1,2,…,

Learner selects action θt ∈ Θ
Nature selects convex loss function ft : Θ → ℝ

Intuition:  OcoRegT := ∑T
t=1 ft(θt) − infθ∈Θ ∑T

t=1 ft(θ) ≤ o(T)

forces learning under adversarial uncertainty!
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Algorithm: Online Gradient Optimization.

For times t = 1,2,…,

Learner updates θt+1 = θt − ηt ∇f(θt)

step size gradient (or convex subgradient)
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Algorithm: Online Gradient Descent (OGD).

For times t = 1,2,…,

Learner updates θt+1 = θt − ηt ∇f(θt)

Theorem (Zinkevich ’03): Suppose that  and each  is 
. Then OGD with step size   satisfies 

Diam(Θ) ≤ D ft
G-Lipschitz ηt = (DG) ⋅ 1

t

OcoRegT := ∑T
t=1 ft(θt) − infθ∈Θ ∑T

t=1 ft(θ) ≤ 2DG T
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Protocol: Online Control over GPC Parameterization

For times t = 1,2,…,
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Learner selects action , and executes  Mt u𝔸
t = ∑k

i=0 M[i]
t wt−i

Nature selects convex loss function  and noise ct wt

Tool 2’: Reducing Online Control to OCO

Protocol: Online Control over GPC Parameterization

For times t = 1,2,…,

Learner suffers ct(x𝔸
t , u𝔸

t )
Dynamics evolve x𝔸

t+1 = Ax𝔸
t + Bu𝔸

t + wt

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Tool 2’: Reducing Online Control to OCO

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



1.  = true algorithm costct(x𝔸
t , u𝔸

t )

Tool 2’: Reducing Online Control to OCO

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



1.  = true algorithm costct(x𝔸
t , u𝔸

t )

Tool 2’: Reducing Online Control to OCO

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



1.  = true algorithm costct(x𝔸
t , u𝔸

t )

Tool 2’: Reducing Online Control to OCO

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



1.  = true algorithm costct(x𝔸
t , u𝔸

t )

Tool 2’: Reducing Online Control to OCO

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Specifically F̃t(M) = Ft(M, …, M) = ct (∑k
i=1 Ai−1BuM

t−i, uM
t )



1.  = true algorithm costct(x𝔸
t , u𝔸

t )

Tool 2’: Reducing Online Control to OCO

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

This is convex in !M

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Specifically F̃t(M) = Ft(M, …, M) = ct (∑k
i=1 Ai−1BuM

t−i, uM
t )



Tool 2’: Reducing Online Control to OCO
1.  = true algorithm costct(x𝔸

t , u𝔸
t )

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Tool 2’: Reducing Online Control to OCO
1.  = true algorithm costct(x𝔸

t , u𝔸
t )

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Update Mt+1 ← Mt − η∇F̃t(Mt)



Tool 2’: Reducing Online Control to OCO
1.  = true algorithm costct(x𝔸

t , u𝔸
t )

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Update Mt+1 ← Mt − η∇F̃t(Mt) Online Gradient Descent



Tool 2’: Reducing Online Control to OCO
1.  = true algorithm costct(x𝔸

t , u𝔸
t )

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

⚠⚠Warning: Technical Part⚠⚠



Tool 2’: Reducing Online Control to OCO
1.  = true algorithm costct(x𝔸

t , u𝔸
t )

2.  =  Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

⚠⚠Warning: Technical Part⚠⚠



Tool 2’: Reducing Online Control to OCO

2.  =   cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1.  = true algorithm costct(x𝔸
t , u𝔸

t )

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Tool 2’: Reducing Online Control to OCO

2.  =   cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1.  = true algorithm costct(x𝔸
t , u𝔸

t )

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

= ∑T
t=1 ct(x𝔸

t , u𝔸
t ) − infM∈Πgpc

∑T
t=1 ct(xM

t , uM
t ) + O⋆(Tρk)



Tool 2’: Reducing Online Control to OCO

2.  =   cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1.  = true algorithm costct(x𝔸
t , u𝔸

t )

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

= ∑T
t=1 ct(x𝔸

t , u𝔸
t ) − infM∈Πgpc

∑T
t=1 ct(xM

t , uM
t ) + O⋆(Tρk)

= ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) + O⋆(Tρk)



Tool 2’: Reducing Online Control to OCO

2.  =   cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1.  = true algorithm costct(x𝔸
t , u𝔸

t )

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

= ∑T
t=1 ct(x𝔸

t , u𝔸
t ) − infM∈Πgpc

∑T
t=1 ct(xM

t , uM
t ) + O⋆(Tρk)

= ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) + O⋆(Tρk)

Online Convex Optimization with Memory



Tool 2’: Reducing Online Control to OCO

2.  =   cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1.  = true algorithm costct(x𝔸
t , u𝔸

t )

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

= ∑T
t=1 ct(x𝔸

t , u𝔸
t ) − infM∈Πgpc

∑T
t=1 ct(xM

t , uM
t ) + O⋆(Tρk)

= ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) + O⋆(Tρk)

Online Convex Optimization with Memory stability



Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)
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2. Take gradient updates as if you  was not changing.   Mt
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≤ ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) ≤ O(k2 T)

Intuition: Combine the standard regret for OCO with bound that 
|Ft(Mt, …, Mt−k) − F̃t(M) | ≤ O⋆(1) ⋅ ∑1≤ℓ,j,≤k ηt−i ≤ k2ηt−k ≲ O⋆(k2 T )



Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

Corollary: If ,  ηt = O(1/ t) k ≫ log T

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

Corollary: If ,  ηt = O(1/ t) k ≫ log T

RegT(𝔸; Πfeedback) ≤ O⋆(k2 T + Tρk) = Õ( T)
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Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

Corollary: If ,  ηt = O(1/ t) k ≫ log T

RegT(𝔸; Πfeedback) ≤ O⋆(k2 T + Tρk) = Õ( T) finally! we are done :)

ut ← uM
t
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Summary: Gradient Perturbation Controller

1.      defined in terms of  ut ← uMt
t M = (M[0], …, M[k])

For t = 1,2,…

Theorem:  Gradient Perturbation Control (GPC) attains 

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W) ≤ Õ( T)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

2.       where  is convexMt ← Mt − ηt ∇F̃t(Mt) F̃t
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RegT(𝔸; Πfeedback) ≤ Õ( T)

From Stable to Stabilized

Assume given any  such that:  is closed-
loop stable

K0 ∥(A + BK0)s∥ ≤ Cρs

Theorem:  GPC with  attains ut ← K0xt+∑k
i=0 M[i]wt−i

Proof: Same, but fold  into dynamicsK0

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Summary

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. We introduce and analyze the Gradient Perturbation Controller (GPC)

2. It is built on Disturbance Feedback Control (DFC) as convex, “improper” 
representation of linear controllers (equivalent to SLS, Anderson et al. ’19)

3. We build on the Online Convex Optimization (OCO) framework to develop a 
gradient-based controller
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From Full Observation to Nature’s Y’s

Goal: Compete the linear controllers for partially observed yt = Cxt + et

Challenge 1: GPC controller needed to “see” , which are now hiddenwt

yt

ut zt+1 = Aπzt + Bπyt

ut = Cπzt + Dπyt

Challenge 2: Static feedback on , , is suboptimal for partial 
observation.

yt ut = Kyt
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(equivalent: IO parametrization, Zames ’81)
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Definition: Disturbance Feedback Control (DFC) uM
t = ∑t

i=0 M[i] ynat
t−i

et

G[i]
w→yw1:T +

ynat
t

G[i]
u→yM

uM
t

+ yt

et

yt = ynat
t + Gu→y ⋆ (∑k

i=1 M[i]ynat
i )

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
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system purely as 
sequence-to-sequence
(e.g. Sutskever, Vinyals, Le)
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w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s): Any stabilizing, dynamic linear controller can be 
approximated by the Disturbance Response Control (DRC)
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M
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Assume Markov Operators* are -stable:  (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s Regret):  Online gradient descent with the Disturbance 
Response Control (DRC)

ut = ∑t
i=0 M[i]

t ynat
t−i Mt+1 = Mt − ηt ∇F̃t(Mt)

Generalizes to known stabilizing controller (eg. LQG) via Youla-Kućera Par.
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From Full Observation to Nature’s Y’s
Assume Markov Operators* are -stable:  (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s Regret):  Online gradient descent with the Disturbance 
Response Control (DRC)

ut = ∑t
i=0 M[i]

t ynat
t−i Mt+1 = Mt − ηt ∇F̃t(Mt)

The entire algorithm can be defined using Markov operators (Improper)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
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Summary

1. We study partial observability ( )yt = Cxt + et

2. We introduce and analyze the Nature’s Y’s parameterization (DFC)

3. We show that the same rate of regret is achievable with essentially the same 
principles.
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Proposition:  RegT ≤ Õ(1)( T + T∥Ĝls − G∥ + T0)
known regret cost for error cost for estimation
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From Known to Unknown Dynamics

Step 1:  For first  steps, use  and estimate T0 ut ∼ N(0,I) Gu→y

ynat
t G[i]

u→yM
uM

t
+ yt

et

Conveniently: We only ever use and estimate the Markov operator.

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

Step 2: Run DFC+OGD controller, replacing   least squares estimate  Gu→y Ĝu→y
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Summary

1. We study unknown dynamics

2. We combine OCO with estimating the Markov operator 

3. Everything works just by working with sequence-to-sequence , i.e. improper, 
parameterization 
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Goal: How slow can we make  as a function of ?RegT T

Also called a fast rate because we want  as fast as possible RegT /T → 0

Assume:  is -strongly convex:  convexct(x, u) α ct(x, u) − α(∥x∥2 + ∥u∥2)/2

aka curvature: if  is smooth:  ct λmin(∇ 2c) ≥ α

accelerate learning 
+ optimization
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Theorem: If  is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ( T /α) unknown dynamics

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Up to log factors, optimal even in online LQR (unknown A, B)

fixed quadratic cost, i.i.d. Gaussian noise, full observation y ≡ xt
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Fast & Optimal Regret Rates

Theorem: If  is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ( T /α) unknown dynamics

Takeaway: For s.c. costs, unknown dynamics determines regret

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

changing costs and adversarial noise only affect rates logarithmically.
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1.      defined in terms of  ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2.      Mt ← Mt − ηt ∇F̃t(Mt)

Theorem: If noise is stochastic/persistent excitation,  
attains fast rate

ηt ← O(1/α)

Optional: Estimate dynamics for first  steps. T0

Proof:  is strongly convex in expectationF̃t
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Theorem: For general noise, the OnlineNewtonStep algorithm 
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Optional: Estimate dynamics for first  steps. T0
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*

Proof:  is exp-concaveF̃t

Intuition: Newton solves ill-conditioned quadratic functions
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t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2.    Mt ← Mt − OnlineNewton(Mt)

Theorem: For general noise, the OnlineNewtonStep algorithm 
(Hazan ’07) attains fast rates. 

Optional: Estimate dynamics for first  steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Proof:  is exp-concaveF̃t

Fast rates for unknown dynamics relies on carefully sensitivity to error 
argument + overparametrization.



Algorithm: Fast Rates

1.      defined in terms of  ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2.    Mt ← Mt − OnlineNewton(Mt)

Takeaway: Only thing that changes is the optimizer + assumptions

Optional: Estimate dynamics for first  steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Proof:  is exp-concaveF̃t
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Summary

1 Fast Rates refer to making  grow as slow as possible.RegT

3. With curvature, the regret is determined only by knowledge of dynamics, and 
only logarithmically affected by changing costs + adversarial noise

2. With curvature, fast rates can be obtained only by modification of the 
optimizer. 
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The need for stabilization 
• Throughout, we assumed a known, stabilizing controller. 

Theorem (Chen & Hazan, ’20): Without a known stabilizing controller, regret 
is , until one stabilizes systemΩ(exp(dimension))

Open Question: What are stronger assumptions under one can 
stabilize the dynamics via online methods?



Beyond linear dynamics 
• Throughout, we assumed a fixed, linear dynamics

Theorem (Gradu, Minyasan, Hazan, ’20): If dynamics  change 
independently of the learner, then can obtain low adaptive regret  

At, Bt, Ct

Open Question: What if dynamics change in response to learner?



Beyond linear dynamics 
• Throughout, we assumed a fixed, linear dynamics

Theorem (Minyasan, Gradu, Simchowitz, Hazan, ’21): If dynamics  
change independently of the learner, then can obtain low adaptive regret  

At, Bt, Ct

Open Question: How to learn for truly nonlinear dynamics?



Towards practical deployment
• Thus far, we have given mostly theoretical results

Theorems: Many of them, illustrating powerful principles in control + AI 
(improperness, online learning, adaptation). 

Open Question: Using online control for the last mile performance.
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1. From optimal/robust control to regret

2. From “proper controller” to convex relaxation

3. Combine statistical learning with online optimization 

Core Concepts:

Many open questions!
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