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Motivation: ML as Improper
Learning
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What about dynamics that are hard to model?
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The Tokamak

It is a donut shaped device HELICAL
designed to confine the reactants MAGNETIC

with a very strong magnetic field PLASMA TOROIDAL FIELD
at extreme conditions. ELECTRICAL MAGNETIC
CURRENT FIELD




The golden rule of modern machine learning

“If computer vision researchers spent all their time
searching for the correct definition of a “cat” in

2015, they would have made zero progress”
— Terry Suh

*this perspective comes with numerous drawbacks, e.g. robustness
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Applying the golden rule to control

1. Learning: quantities which are unknown can be estimated statisticall

2. Relaxation/“Improperness:” learn surrogate models which do not
share the same functional form as the ground-truth (e.g. neural
dynamics)

3. Adaptation: we can adapt our actions to a changing world.
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Core Concepts:

1. From optimal/robust control to regret
2. From “proper controller” to convex relaxation

3. Combine statistical learning with online optimization



Basics of Classical Control
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= 80) +e,

dynamics model observation model observation noise
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Control As an Interactive Protocol

For each time t,

1. | Nature picks noise (w,, ¢,

2. | Dynamics reveal y, = g(x,) + ¢,

3. Control agent picks u,

4. Dynamics evolve x, | = f (xt, Wt) T W,

Goal: For a given cost ¢( -, - ), make J; = Zthl c(y,, u,) as small as possible.

what does this mean?
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“might be hard computationally

. | ' )’1 T
control policC —>
P y open- Ioop control
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Agent’s ‘Strategy’: A Control Policy

Otherwise: need control policy 7 mapping past observations to current input,
to hedge over future uncertainty (and handle partial observation)

1. History Dependent: 7 : (y,.,,u;.,_;) = u,

2. State-Based 7 : (x.,,u;., ) = u,

3. State-Feedback 7 : x, — u,
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Background: The Optimal Control Problem

The optimal control problem is

min OQ[J(z; W)]

1 (open-loop planning/trajectory opt. )
2. (stochastic optimal control)

3. (robust control, e.g. the work of John Doyle)
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Summary

1. We introduced dynamical systems

2. We formulated control as an interactive protocol, and described open-
and closed-loop policies are agent strategies

3. We introduced the noise-dependent cost functional J(7; W) = Z;T:l c(y, u,)

4. We briefly described classical noise models (fixed, random, worst-case).
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Classical Linear Quadratic Optimal Control

o1 o]
min lim —E  [J(7; W)] min lim —  sup [Jp(m; W)]
r Tooo T 7 T=00 L |y jlefl<]
Stochastic Control Robust Control
The # , control problem: w,, ¢, The # _ control problem:

are i.i.d Gaussian (Kalman, LQG) w,, e, are worst case (Doyle)
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Classical Linear Quadratic LQ Optimal Control

1 1
min lim —E, [JA(7; W)] min lim — sup [Jp(z; W)]
r Tooo T " r T—oo )<

Theorem: If fully observed (y, = x,), state-feedback is optimal
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Linear Quadratic Optimal Control Problems

Classical Linear Quadratic LQ Optimal Control

1 A |
min lim —E [J(m; W)] min im —  sup  [J(z; W)]
r Tooo T 7 T=00 L |y jlefl<]

Theorem: For general LQ control are linear dynamic policies are optimal:

Z1 = Az + By,
u, = C,z,+ D, y,

T




Linear Quadratic Optimal Control Problems

Classical Linear Quadratic LQ Optimal Control

1 A |
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Linear Quadratic Optimal Control Problems

Classical Linear Quadratic LQ Optimal Control

| L.
min lim — min lim —  sup [Jp(7z; W)]

r T—oo T 7 T=00 L |y jlefl<]

Important Takeaway: Linear Quadratic Control Problems admit
easy-to-express controllers.
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Beyond LQ Control

Challenge 1: If costs/constraints are no longer quadratic, optimal control is
hard to describe, even if dynamics are linear.

Example (£, control, Borelli *03): c(y,u) = |||l + |||,

Challenge 2: Optimizing over feedback (static or dynamic) is non-
convex and can be computationally hard:

This is because, e.g. in full observation x, = Z (A + BK)"™*(Bu, + w,)

\)
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Beyond LQ Control

Challenges: Direct optimization over feedback controllers can be hard, and
exact optimal control laws can be hard to express.

Insight: Optimization restricted to linear policies can be

reparametrized to be convex if costs/constraints are convex

Powerful Observation: Youla-Kucera 76, Zames ‘81 (I0), Anderson et al. ’19 (SLS)
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Summary

X,.1 = Ax, + Bu, + w,

1. We introduced linear dynamical systems

2. We described the optimal control laws for linear-quadratic (LQ) control
3. We described computational difficulties beyond the LQ regime

4. We hinted at convex relaxations as a tool for efficient optimization.
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The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

Naively: min_J(z; W) for every W

1.1.d. We will allow adversarial noise, but introduce regret to worst-case

measure performance
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Fix a class of comparator policies 7 € |1

I T T
Jr (A, W) = Zt:l C(ytAa MtA) Jr(m, W) = ZtT=1 c(y;, uy)

counterfactual cost under policy 7 € 11

NNNNNNNNNN
TTTTTTT

“I've had a few”

A for algorithm
also called ‘learner’ or ‘agent’
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algorithm hindsight

(with full knowledge of disturbances)
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Fix a class of comparator policies 7 € |1

Goal: Reg, = o(7) (vanishing regret as fraction of horizon) for all W

“competing with [1”
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Why a restricted comparator class?

1. If 11 is unrestricted, comparator cost is open-loop optimal plan.

we can embed a prediction problem where comparator has
zero cost (perfect knowledge), but learner has €2(7') cost.
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Solution Concept: Regret

THE BEST

L yeeenen o
9 NOTHING BUT
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Reg (A;I) = J(A; W) — min  J (7; W)

nell

Why a restricted comparator class?

1. If 11 is unrestricted, comparator cost is open-loop optimal plan.

2. We can restrict 11 to make optimization computationally efficient.

Key Idea: Optimizing over linear policies can efficient, even when optimal control is not.
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Compared to What? For linear dynamics.

What class of comparator policies 7 € [1?

Informally: 11 is the set of all linear policies
that stabilize the dynamics

For LQ control, these are all linear policies that are
stable with exponential decay > ‘

1.1.d. orst-case

Pendulum
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For each time 71,

1. | Nature picks noise (w,, ¢,) and a cost ¢,
2. | Dynamics reveal y, = g(x,) + ¢,

3. Control agent picks u,
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Linear Nonstochastic Control: Interactive Protocol

For each time 71,

1. | Nature picks noise (w,, ¢,) and a cost ¢,

2. | Dynamicsreveal y, = Cx, + ¢,

3. Control agent picks u,

Goal: make Reg(A; 1) = J(A; W) —min_ g J(z; W) = o(T).

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Summary

1. Non-stochastic control iIs an intermediate between stochastic and robust

2. We define regret to a restricted comparator class as a performance yardstick
when noise is possibly adversarial

3. We formulated the non-stochastic control protocol, including changing costs.
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Roadmap: Core Challenges

Goal: make Reg,(A;1l) = J(A; W) — min__ J(z; W) small.

/ \
How to compete

benchmark online, How to efficiently

parameterize control
policies 7 € [1?

despite unknown costs/
disturbances

Tool: Online Convex Optimization Tool: Convex Control Parametrization

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Roadmap: Assumptions

Assumption 1: Costs c,(x, u) are convex, OJ(1)-Lipschitz
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Assumption 2: Disturbances are uniformly bounded sup ||w ||,||¢,]| < 1
[

(can be relaxeq)



The Gradient Perturbation
Controller (GPC)



Roadmap

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics
3. Unknown Dynamics: System Identification

4. Optimal Regret: Leveraging Curvature

5. Open Problems / Hardness Results

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Warmup: Known System + Stable Dynamics

1. Fully Observed: y, = x,

2. Known Dynamics: x,, | = Ax, + Bu, + w,

3. Stable Dynamics: ||A°|| < Cp®



Warmup: Known System + Stable Dynamics

1. Fully Observed: y, = x,

2. Known Dynamics: x,, | = Ax, + Bu, + w,

3. Stable Dynamics: ||A°|| < Cp®

(Don’t worry: all will be relaxed)



Warmup: Known System + Stable Dynamics

1. Fully Observed: y, = x,

2. Known Dynamics: x,, | = Ax, + Bu, + w,

3. Stable Dynamics: ||A°|| < Cp®

(Don’t worry: all will be relaxed)

Pendulum
stable
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The Gradient Perturbation Controller

Forr=1,2,...

1' defined in terms of M = (M, ..., M) (convex
t parametrization)
2.(M,, < M,—nVF(M,)| whereF,is convex (online gradient
descent)
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V1:T

X

[

eredback .= {ﬂ'(X) — Kx : A + BK 1S (C, p) Stable)

closed loop dynamics

U
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U, ‘
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closed loop dynamics

Includes optimal #,, # _, controllers
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Goal: Known System + Stable Dynamics

Theorem: Gradient Perturbation Control (GPC) attains

RegT (A; eredback) =J T (A; W) - infﬂKEHféedbaCk J T (7[ K; W) < O(ﬁ)

e gqpack := 1(x) = Kx : A+ BK is (C, p) stable)

V1T
dynamics
Includes optimal % ,, #Z _, controllers but non-convex! X,
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Tool 1: Convex Controller Parametrization

Define: The Disturbance Feedback Control (DFC) parameterization:

this is implementable online with known dynamics: w, = x,_; — (Ax, + Bu,)

Equivalent to the SLS Parametrization of (Anderson et al, 2019)
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Tool 1: Convex Controller Parametrization

Define: The Disturbance Feedback Control (DFC) parameterization:

Independent of past control inputs

W w

t
dynamics

(efficient computation of counterfactuals)
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Observation: The mapping from M — (xtM, utM) s linear

Independent of past control inputs

Corollary: Assuming COE}VGX costs, mapping
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Tool 1: Convex Controller Parametrization

Observation: The mapping from M — (xtM, utM) is linear

Corollary: By linearity ofT dynamics, mapping
M — J(a"; W) := thl c,(x™, uM) is convex

In learning theory, we call this improper learning.

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Tool 1: Convex Controller Parametrization

Theorem: Consider any controller K such that A + BK is (C, p) stable.
Then, 3 a DFC controller " = Zk M[l]wt_- with [|[M|| < O*(1) s.t.
1=

Informally: DFC Controllers are an improper relaxation of static feedback
controllers

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Corollary: Let Il 4. denote all policies m(x) = Kx makes s.t. A + BK
is (C, p) stable. Then, the class [1,,. of all memory-k controllers with
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Tool 1: Convex Controller Parametrization

Corollary: Let Il 4. denote all policies m(x) = Kx makes s.t. A + BK
is (C, p) stable. Then, the class [1,,. of all memory-k controllers with

satisfies

(@ssuming
Lipschitz
costs)

suffices to optimize over 11, .

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Summary
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Tool 1: Convex Controller Parametrization

W,

}

: xz
dynamics

Summary Wi

1. Efficient optimization mapping from

T .
M — J(a", W) := thl c,(x”, uM) is convex

2. For bounded M of memory k: inf J;(IL,,.) — inf J;(Igeqpaer) < 0, (Tp"
M K

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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The Gradient Perturbation Controller

Forr=1,2,...

1. defined in terms of M = (MY, ... MK V
2|M,, < M —nVF(M] wherecF,isconvex (online gradient
descent)
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Learner selects action 8, € ©

Nature selects convex loss functionf, : ©® — |

Goal: Make OcoReg; := Y, fi(6,) —infycq Y _ f(0) < o(T)

realized loss best-in-hindsight
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Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

Fortimest = 1,2,...,

Learner selects action 8, € ©

Nature selects convex loss functionf, : ©® — |

Intuition: OcoReg; := Zthl (0, — nty_q Zthl 1(0) < o(T)

forces learning under adversarial uncertainty!
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Algorithm: Online Gradient Optimization.

Fortimest = 1,2,...,

Learner updates 0., = 60, — n, Vf(0,)

step size gradient (or convex subgradient)
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Algorithm: Online Gradient Descent (OGD).

Fortimest = 1,2,...,

Learner updates 0., = 60, — n, Vf(0,)

Theorem (Zinkevich ’03): Suppose that Diam(®) < D and each f, is
G-Lipschitz. Then OGD with step size 7, = (DG) - 7 satisfies
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Protocol: Online Control over GPC Parameterization
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Tool 2’: Reducing Online Control to OCO

Protocol: Online Control over GPC Parameterization
Fortimest = 1,2,...,

. k '
Learner selects action M, and executes u/* = » . M "w,_.
Nature selects convex loss function ¢, and noise w,

A A
Learner suffers ¢(x; ", u,")

- A A A A
Dynamics evolve x|, = Ax;” + Bu;” + w,

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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1. c(x*, u*) = true algorithm cost

2. F(M,...M_)=c(x,u)|x_, <0, u, < u' t—k<s<t

counterfactual cost with memory &

[—1°

Specifically F(M) = F(M, ...,M) = 6}(2 Ai-lg,M M)

This is convex in M!
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1. c(x*, u*) = true algorithm cost

2. F(M,...M_)=c(x,u)|x_, <0, u, < u' t—k<s<t

counterfactual cost with memory &

Update M, , < M, —n VF (M) Online Gradient Descent
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1. c(x, u”) = true algorithm cost
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RegT(A; eredback) =J T(A; W) — inanEeredbaCk J T (ﬂM; W)

: T
= e u) — infyen X el u) + O*(Tp*)
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Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Tool 2’: Reducing Online Control to OCO

1. c(x, u”) = true algorithm cost

2. F(M,,....M,_) =c(x,u) | x,_; < 0, u,_, < u, costwith memory k

RegT(A; eredback) =J T(A; W) — inanEeredbaCk J T (ﬂM; W)

T : T
— =1 Cl‘('xtA, utA) — 1nfM€ngC Zt=1 Ct(XtM, I/ttM) -+ 0*(Tpk)

Online Convex Optimization with Memory stability
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Tool 2’: Reducing Online Control to OCO

T . T
Regr(A; Mipeqpact) < X F(M,, ..., M,_)) —infy, > F(M,...,M) + O,(Tp")

Algorithm: Gradient-Perturbation Controller (GPC)

M, , =M —nVFEM) FM)=FWM,...M) u < u"

1. Ignore long history: (M., .... M, ) =c/(x,u,) | x,_;, < 0, u,_, < Zi.;o M[i]wt_f_i

2. Take gradient updates as if you M, was not changing.

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Tool 2’: Reducing Online Control to OCO

T . T
Regr(A; Mipeqpact) < X F(M,, ..., M,_)) —infy, > F(M,...,M) + O,(Tp")

Algorithm: Gradient-Perturbation Controller (GPC)

M, , =M —nVFEM) FM)=FWM,...M) u < u"
Theorem (OCO with Memory, Anava ’13): If i, = 0(1/\/;) then

<Y F(M,...M_)—infy, Y  F(M,...M)< Ok*/T)

Intuition: Combine the standard regret for OCO with bound that
| F(Myy s M) = FM) | < O,(1D) - X i S K S 0L (K T)
Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Tool 2’: Reducing Online Control to OCO

T . T
Regr(A; Mipeqpact) < X F(M,, ..., M,_)) —infy, > F(M,...,M) + O,(Tp")

Algorithm: Gradient-Perturbation Controller (GPC)

M, , =M —nVFEM) FM)=FWM,...M) u < u"

Corollary: If 7, = 0(1/\/;), k> logT

RegT (A; eredback) < 0*(k2ﬁ T TIO k) — é(ﬁ)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Tool 2’: Reducing Online Control to OCO

T . T
Regr(A; Mipeqpact) < X F(M,, ..., M,_)) —infy, > F(M,...,M) + O,(Tp")

Algorithm: Gradient-Perturbation Controller (GPC)

M, , =M —nVFEM) FM)=FWM,...M) u < u"

Corollary: If 7, = 0(1/\/;), k> logT

Reg (A Hieegpack) < 0*(k2ﬁ + T,Ok) = é(ﬁ ) finally! we are done :)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Summary: Gradient Perturbation Controller

Forr=1,2,...

1. defined in terms of M = (M[O], ...,M[k]) V
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Summary: Gradient Perturbation Controller

Forr=1,2,...

1. defined in terms of M = (M1, ... Mk V
2| M, — M,—n VF(M,) |where F,is convex V
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Summary: Gradient Perturbation Controller

Forr=1,2,...

1. defined in terms of M = (M1, ... Mk V
2| M, — M,—n VF(M,) |where F,is convex V

Theorem: Gradient Perturbation Control (GPC) attains

RegT(A; eredback) =J T(A; W) - infﬂKEeredbaCk J T(ﬂM; W) < é(ﬁ)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



From Stable to Stabilized

Previously, we assumed stable dynamics: ||A°|| < Cp®
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From Stable to Stabilized

Previously, we assumed stable dynamics: ||A°|| < Cp®

Here, we assume we know any K, such that: ||(A + BK,))’|| < Cp’
Is closed-loop stable

e.g. f you know the dynamics, you can solve an LQR problem to get K|,

*stay tuned for if you don’t know K,

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



From Stable to Stabilized

Assume given any K, such that: ||(A + BK))’|| £ Cp’ is closed-
loop stable
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Assume given any K, such that: ||(A + BK))’|| £ Cp’ is closed-
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From Stable to Stabilized

Assume given any K, such that: ||(A + BK))’|| £ Cp’ is closed-
loop stable

Theorem: GPC with u, < Kyx+ Zi;o M [i]wt_l- attains

Reg(A; Miegnaa) < OGW/T)  Proof: Same, but fold K, into dynamics

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Summary

1. We introduce and analyze the Gradient Perturbation Controller (GPC)
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Summary

1. We introduce and analyze the Gradient Perturbation Controller (GPC)

2. It is built on Disturbance Feedback Control (DFC) as convex, “improper”
representation of linear controllers (equivalent to SLS, Anderson et al. ’19)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019



Summary

1. We introduce and analyze the Gradient Perturbation Controller (GPC)

2. It is built on Disturbance Feedback Control (DFC) as convex, “improper”
representation of linear controllers (equivalent to SLS, Anderson et al. ’19)

3. We build on the Online Convex Optimization (OCQ) framework to develop a
gradient-based controller

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
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Roadmap

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics
3. Unknown Dynamics: System Identification

4. Optimal Regret: Leveraging Curvature

5. Open Problems / Hardness Results
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From Full Observation to Nature’s Y’s

Challenge 1: GPC controller needed to “see” w,, which are now hidden



From Full Observation to Nature’s Y’s

Challenge 1: GPC controller needed to “see” w,, which are now hidden

Challenge 2: Static feedback on y,, u, = Ky,, is suboptimal for partial
observation.

Zy1 = Az + By,

Vi




From Full Observation to Nature’s Y’s

Idea: Convex parametrization (control lang.) or improperness (learning lang.)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
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From Full Observation to Nature’s Y’s

Idea: Convex parametrization (control lang.) or improperness (learning lang.)

Define the Markov Operators Y, = e+ Z{:O Gv[vi]_)ywt_ﬁ Gxt_,-

l

nat

Nature’s Y’s Yy,

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
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From Full Observation to Nature’s Y’s
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From Full Observation to Nature’s Y’s

convex control parametrization!

Wi.r —> @ (equivalent: |O parametrization, Zames '81)
€
K |

;!
&) O

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



From Full Observation to Nature’s Y’s

¢ can be recovered

l nat

| Y =N Gu—>y * Uy,

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



From Full Observation to Nature’s Y’s

this represents a l l
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From Full Observation to Nature’s Y’s
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From Full Observation to Nature’s Y’s

Assume Markov Operators* are (C, p)-stable: max{||G!4_ ||, |G ||} < Cp’

w—y U—y

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



From Full Observation to Nature’s Y’s

Assume Markov Operators* are (C, p)-stable: max{||G!4_ ||, |G ||} < Cp’

Theorem (Nature’s Y’s): Any stabilizing, dynamic linear controller can be
approximated by the Disturbance Response Control (DRC)

> MU < 0,(1)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
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From Full Observation to Nature’s Y’s

Assume Markov Operators* are (C, p)-stable: max{||G!4_ ||, |G ||} < Cp’

Theorem (Nature’s Y’s Regret): Online gradient descent with the Disturbance
Response Control (DRC)

obtains ijf‘l/[f Reg(A;I14.) < é(ﬁ)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



From Full Observation to Nature’s Y’s

Assume Markov Operators* are (C, p)-stable: max{||G!4_ ||, |G ||} < Cp’

Theorem (Nature’s Y’s Regret): Online gradient descent with the Disturbance
Response Control (DRC)

Generalizes to known stabilizing controller (eg. LQG) via Youla-Kucera Par.

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



From Full Observation to Nature’s Y’s

Assume Markov Operators* are (C, p)-stable: max{||G!4_ ||, |G ||} < Cp’

Theorem (Nature’s Y’s Regret): Online gradient descent with the Disturbance
Response Control (DRC)

The entire algorithm can be defined using Markov operators (Improper)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
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Summary

1. We study partial observability (y, = Cx, + ¢))
2. We introduce and analyze the Nature’s Y’s parameterization (DFC)

3. We show that the same rate of regret is achievable with essentially the same
principles.



Roadmap

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics
3. Unknown Dynamics: System ldentification

4. Optimal Regret: Leveraging Curvature

5. Open Problems / Hardness Results
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Challenge 2: We need to dynamics to form to F . (simulated costs under M)
€t

; '
nat U; .
0% E-0—

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



From Known to Unknown Dynamics

Goal: Compete the linear controllers even if (A, B, C') unknown

Challenge 1: DFC/GPC controller needed to know dynamics to recover w, or y,flat

Challenge 2: We need to dynamics to form to F . (simulated costs under M)

U

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
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Step 1: For first 7, steps, use u, ~ N(0,/) and estimate G, _,,
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From Known to Unknown Dynamics

Step 1: For first 7, steps, use u, ~ N(0,/) and estimate G, _,,

Step 2: Run DFC+OGD controller, replacing GM_W least squares estimate CA?M_W

Proposition: Reg, < 5(1)(ﬁ + THCA?IS — G| + To)

known regret cost for error cost for estimation

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



From Known to Unknown Dynamics

Step 1: For first 7, steps, use u, ~ N(0,/) and estimate G, _,,

Step 2: Run DFC+OGD controller, replacing GM_W least squares estimate CA?M_W
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From Known to Unknown Dynamics

Step 1: For first 7, steps, use u, ~ N(0,/) and estimate G, _,,

Step 2: Run DFC+OGD controller, replacing GM_W least squares estimate CA?M_W

Theorem: Reg < O(T??) where 1y = T3

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



From Known to Unknown Dynamics

Step 1: For first 7, steps, use u, ~ N(0,/) and estimate G, _,,

Step 2: Run DFC+OGD controller, replacing GM_W least squares estimate CA?M_W
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From Known to Unknown Dynamics

Step 1: For first 7, steps, use u, ~ N(0,/) and estimate G, _,,

Step 2: Run DFC+OGD controller, replacing Gu_w least squares estimate CA?M_W

Conveniently: We only ever use and estimate the Markov operator.

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
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1. We study unknown dynamics

2. We combine OCO with estimating the Markov operator



Summary

1. We study unknown dynamics

2. We combine OCO with estimating the Markov operator

3. Everything works just by working with sequence-to-sequence , i.e. Improper,
parameterization



Roadmap

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics
3. Unknown Dynamics: System lIdentification

4. Optimal Regret: Leveraging Curvature

5. Open Problems / Hardness Results
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Fast & Optimal Regret Rates

Goal: How slow can we make Reg as a function of 77

Also called a fast rate because we want Reg,/T — 0 as fast as possible

Assume: c,(x, 1) is a-strongly convex: c,(x, u) — a(||x||* + ||u||*)/2 convex

aka curvature: if ¢, is smooth: 4_. (V“¢) > a \/
accelerate learning

+ optimization



Fast & Optimal Regret Rates

Theorem: If ¢,(x, 1) is a-strongly convex, there exists algorithms such that
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Theorem: If ¢,(x, 1) is a-strongly convex, there exists algorithms such that
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Fast & Optimal Regret Rates

Theorem: If ¢,(x, 1) is a-strongly convex, there exists algorithms such that
1. Reg, < poly(log T)/a known dynamics

2. Reg; < 5(ﬁ /) unknown dynamics

Compare to \ﬁ’ and 72" regret, previously

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020
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Fast & Optimal Regret Rates

Theorem: If ¢,(x, 1) is a-strongly convex, there exists algorithms such that
1. Reg, < poly(log T)/a known dynamics

2. Reg; < 5(ﬁ /) unknown dynamics

Up to log factors, optimal even in online LQR (unknown A, B)
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Fast & Optimal Regret Rates

Theorem: If ¢,(x, 1) is a-strongly convex, there exists algorithms such that
1. Reg, < poly(log T)/a known dynamics

2. Reg; < 5(ﬁ /) unknown dynamics

Up to log factors, optimal even in online LQR (unknown A, B)

fixed quadratic cost, i.i.d. Gaussian noise, full observation y = X,

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020



Fast & Optimal Regret Rates

Theorem: If ¢,(x, 1) is a-strongly convex, there exists algorithms such that
1. Reg, < poly(log T)/a known dynamics
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Fast & Optimal Regret Rates

Theorem: If ¢,(x, 1) is a-strongly convex, there exists algorithms such that
1. Reg, < poly(log T)/a known dynamics

2. Reg; < O(ﬁ /) unknown dynamics

Takeaway: For s.c. costs, unknown dynamics determines regret
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Fast & Optimal Regret Rates

Theorem: If ¢,(x, 1) is a-strongly convex, there exists algorithms such that
1. Reg, < poly(log T)/a known dynamics

2. Reg; < 5(ﬁ /) unknown dynamics

Takeaway: For s.c. costs, unknown dynamics determines regret

changing costs and adversarial noise only affect rates logarithmically.

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020



Algorithm: Fast Rates

Optional: Estimate dynamics for first 1, steps.

For 1 = To, To_l' 1,

1.|u, < uth defined in terms of M = (M[O], ...,M[k])

Agrawal, Hazan, Singh “Logarithmic Regret for Online Control”, 2019
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Algorithm: Fast Rates

Optional: Estimate dynamics for first 1, steps.

For 1 = To, To_l' 1,

1.|u, < uth defined in terms of M = (M[O], ...,M[k])

2|M, — M, —n VE(M,) | Proof: F, is strongly convex in expectation

Agrawal, Hazan, Singh “Logarithmic Regret for Online Control”, 2019

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020



Algorithm: Fast Rates

Optional: Estimate dynamics for first 1, steps.

For 1 = TO’ To_l' 1,

1.|u, < uth defined in terms of M = (M[O], ...,M[k])

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020



Algorithm: Fast Rates

Optional: Estimate dynamics for first 1, steps.

For 1 = To, To_l' 1,

1.|u, < uth defined in terms of M = (M[O], ...,M[k])

2.| M, — M, — OnlineNewton(M,)

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020



Algorithm: Fast Rates

Optional: Estimate dynamics for first 1, steps.

For 1 = To, To_l' 1,

1.|u, < uth defined in terms of M = (M[O], ...,M[k])

2| M, — M, — OnlineNewton(M,) | Proof: F, is exp-concave

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020



Algorithm: Fast Rates

Optional: Estimate dynamics for first 1, steps.

For 1 = To, To_l' 1,

1.|u, < uth defined in terms of M = (M[O], ...,M[k])

2| M, — M, — OnlineNewton(M,) | Proof: F, is exp-concave

Intuition: Newton solves ill-conditioned quadratic functions
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Algorithm: Fast Rates

Optional: Estimate dynamics for first 1, steps.

For{ = To, To_l' 1,

1.|u, < uth defined in terms of M = (M[O], ...,M[k])

2| M, — M, — OnlineNewton(M,) | Proof: F, is exp-concave

Fast rates for unknown dynamics relies on carefully sensitivity to error
argument + overparametrization.
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Summary

1 Fast Rates refer to making Reg grow as slow as possible. \/

2. With curvature, fast rates can be obtained only by modification of the
optimizer.

3. With curvature, the regret is determined only by knowledge of dynamics, and
only logarithmically affected by changing costs + adversarial noise



Hardness Results and Open
Questions




Roadmap

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics
3. Unknown Dynamics: System Identification

4. Optimal Regret: Leveraging Curvature

5. Open Problems / Hardness Results



The need for stabilization

 Throughout, we assumed a known, stabilizing controller.

Theorem (Chen & Hazan, ’20): Without a known stabilizing controller, regret
is (2(exp(dimension)), until one stabilizes system




Beyond linear dynamics

 Throughout, we assumed a fixed, linear dynamics

Theorem (Gradu, Minyasan, Hazan, ’20): If dynamics A,, B,, C, change

iIndependently of the learner, then can obtain low adaptive regret

Open Question: What if dynamics change in response to learner?




Beyond linear dynamics

 Throughout, we assumed a fixed, linear dynamics

Theorem (Minyasan, Gradu, Simchowitz, Hazan, '21): If dynamics A,, B,, C,

change independently of the learner, then can obtain low adaptive regret

Open Question: How to learn for truly nonlinear dynamics?




Towards practical deployment

 Thus far, we have given mostly theoretical results

Theorems: Many of them, illustrating powerful principles in control + Al
(improperness, online learning, adaptation).
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Core Concepts:

1. From optimal/robust control to regret
2. From “proper controller” to convex relaxation

3. Combine statistical learning with online optimization

Many open questions!



Non-stochastic control at the intersection
Adaption

Adaptive
Control

SysID

Convex
Relaxations

Learning “Improperness”

Certainty
Equivalence

Youla, SLS



Non-stochastic control at the intersection
Adaption

Adaptive
Control

SysID

Convex
Relaxations

Learning “Improperness”

Certainty
Equivalence

Youla, SLS



References

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019
Agrawal, Hazan, Singh “Logarithmic Regret for Online Control”, 2019

Hazan, Kakade, Singh, “The Nonstochastic Control Policy”
Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020
Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Gradu, Minyasan, Hazan “Adaptive Regret for Control of Time-Varying Dynamics”, 2020

Chen, Hazan “Blackbox Control for Linear Dynamical Systems”, 2021



