
Max Simchowitz (CMU) & Elad Hazan (Princeton)

Nonstochastic Control
Controlling Dynamics Online

Motivation: ML as Improper
Learning

The World is Full of Dynamical Systems

The World is Full of Dynamical Systems

robotics

The World is Full of Dynamical Systems

robotics power grid

The World is Full of Dynamical Systems

robotics power grid chemical plants

What about dynamics that are hard to model?

The golden rule of modern machine learning

“If computer vision researchers spent all their time
searching for the correct definition of a “cat” in

2015, they would have made zero progress”
— Terry Suh

*this perspective comes with numerous drawbacks, e.g. robustness

Applying the golden rule to control

1. Learning: quantities which are unknown can be estimated statistically

Applying the golden rule to control

1. Learning: quantities which are unknown can be estimated statistically

2. Relaxation/“Improperness:” learn surrogate models which do not
share the same functional form as the ground-truth (e.g. neural
dynamics)

Applying the golden rule to control

1. Learning: quantities which are unknown can be estimated statistically

2. Relaxation/“Improperness:” learn surrogate models which do not
share the same functional form as the ground-truth (e.g. neural
dynamics)

3. Adaptation: we can adapt our actions to a changing world.

Applying the golden rule to control

Applying the golden rule to control

This Tutorial: A Mathematical Formalism for Control that
combines learning, improperness, and adaption.

1. Learning: quantities which are unknown can be estimated

Applying the golden rule to control

This Tutorial: A Mathematical Formalism for Control that
combines learning, improperness, and adaption.

1. Learning: quantities which are unknown can be estimated

2. Relaxation/“Improperness:” learn surrogate models which do not
share the same functional form as the ground-truth (e.g. neural
dynamics)

Applying the golden rule to control

This Tutorial: A Mathematical Formalism for Control that
combines learning, improperness, and adaption.

1. Learning: quantities which are unknown can be estimated

2. Relaxation/“Improperness:” learn surrogate models which do not
share the same functional form as the ground-truth (e.g. neural
dynamics)

3. Adaptation: we can adapt our actions to a changing world.

Applying the golden rule to control

This Tutorial: A Mathematical Formalism for Control that
combines learning, improperness, and adaption.

“Improperness”Learning

Applying the golden rule to control
Adaption

“Improperness”Learning

Applying the golden rule to control
Adaption

Adaptive
Control

“Improperness”Learning

Applying the golden rule to control
Adaption

Adaptive
Control

SysID

Certainty
Equivalence

“Improperness”Learning

Applying the golden rule to control
Adaption

Adaptive
Control

SysID

Certainty
Equivalence

Iterative
Learning
Control

“Improperness”Learning

Applying the golden rule to control
Adaption

Youla, SLS

Convex
Relaxations

Adaptive
Control

SysID

Certainty
Equivalence

Iterative
Learning
Control

“Improperness”Learning

Non-stochastic control at the intersection
Adaption

Youla, SLS

Convex
Relaxations

Adaptive
Control

SysID

Certainty
Equivalence

ILC

Core Concepts:

Core Concepts:

1. From optimal/robust control to regret

Core Concepts:

1. From optimal/robust control to regret

2. From “proper controller” to convex relaxation

Core Concepts:

1. From optimal/robust control to regret

2. From “proper controller” to convex relaxation

3. Combine statistical learning with online optimization

Basics of Classical Control

Background: Dynamical Systems
Recall: A dynamical system is

xt+1 = f(xt, ut) + wt

state control input disturbance

Background: Dynamical Systems
Recall: A dynamical system is

xt+1 = f(xt, ut) + wt yt = g(xt) + et

dynamics model observation model observation noise

Control As an Interactive Protocol
For each time t,

Control As an Interactive Protocol
For each time t,

1. Nature picks noise (wt, et)

Control As an Interactive Protocol
For each time t,

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

Control As an Interactive Protocol
For each time t,

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

Control As an Interactive Protocol
For each time t,

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve xt+1 = f(xt, wt) + wt

Control As an Interactive Protocol
For each time t,

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve xt+1 = f(xt, wt) + wt

Goal: For a given cost , make as small as possible. c(⋅ , ⋅) JT = ∑T
t=1 c(yt, ut)

Control As an Interactive Protocol
For each time t,

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve xt+1 = f(xt, wt) + wt

Goal: For a given cost , make as small as possible. c(⋅ , ⋅) JT = ∑T
t=1 c(yt, ut)

what does this mean?

Agent’s ‘Strategy’: A Control Policy
If dynamics and known beforehand, can directly* optimize W := (w1:T, e1:T)

JT = ∑T
t=1 c(yt, ut) *might be hard computationally

Agent’s ‘Strategy’: A Control Policy
If dynamics and known beforehand, can directly* optimize W := (w1:T, e1:T)

JT = ∑T
t=1 c(yt, ut) *might be hard computationally

environmentcontrol policy
u1:T y1:T

open-loop control

w1:T

Agent’s ‘Strategy’: A Control Policy
Otherwise: need control policy mapping past observations to current input,
to hedge over future uncertainty (and handle partial observation)

π

Agent’s ‘Strategy’: A Control Policy
Otherwise: need control policy mapping past observations to current input,
to hedge over future uncertainty (and handle partial observation)

π

environmentcontrol policy

yt

ut

w1:T

Agent’s ‘Strategy’: A Control Policy
Otherwise: need control policy mapping past observations to current input,
to hedge over future uncertainty (and handle partial observation)

π

environmentcontrol policy

yt

ut

w1:T

1. History Dependent: π : (y1:t, u1:t−1) → ut

2. State-Based π : (x1:t, u1:t−1) → ut

3. State-Feedback π : xt → ut

Background: Control Cost
Recall: For a fixed dynamical system, the control cost of a policy is π

JT(π; W) = ∑T
t=1 c(yt, ut) control-cost

Background: Control Cost
Recall: For a fixed dynamical system, the control cost of a policy is π

JT(π; W) = ∑T
t=1 c(yt, ut)

1. xt+1 = f(xt, ut) + wt yt = g(xt) + et

control-cost

Background: Control Cost
Recall: For a fixed dynamical system, the control cost of a policy is π

JT(π; W) = ∑T
t=1 c(yt, ut)

1. xt+1 = f(xt, ut) + wt yt = g(xt) + et

2. ut = π(y1:t, u1:t−1)

Background: Control Cost
Recall: For a fixed dynamical system, the control cost of a policy is π

JT(π; W) = ∑T
t=1 c(yt, ut)

1. xt+1 = f(xt, ut) + wt yt = g(xt) + et

2. ut = π(y1:t, u1:t−1)

3. W = (w1:T, e1:T)

Background: The Optimal Control Problem
The optimal control problem is

min
π

𝕆[JT(π; W)]

Background: The Optimal Control Problem
The optimal control problem is

min
π

𝕆[JT(π; W)]

describes the W

Background: The Optimal Control Problem
The optimal control problem is

min
π

𝕆[JT(π; W)]

Background: The Optimal Control Problem
The optimal control problem is

min
π

𝕆[JT(π; W)]

1. fixed W (open-loop planning/trajectory opt.)

Background: The Optimal Control Problem
The optimal control problem is

min
π

𝕆[JT(π; W)]

1. fixed W (open-loop planning/trajectory opt.)

2. random 𝔼W (stochastic optimal control)

Background: The Optimal Control Problem
The optimal control problem is

min
π

𝕆[JT(π; W)]

1. fixed W (open-loop planning/trajectory opt.)

2. random 𝔼W (stochastic optimal control)

3. worst-case supW∈… (robust control, e.g. the work of John Doyle)

Summary

Summary

1. We introduced dynamical systems xt+1 = f(xt, ut) + wt yt = g(xt) + et

Summary

1. We introduced dynamical systems xt+1 = f(xt, ut) + wt yt = g(xt) + et

2. We formulated control as an interactive protocol, and described open-
and closed-loop policies are agent strategies

Summary

1. We introduced dynamical systems xt+1 = f(xt, ut) + wt yt = g(xt) + et

2. We formulated control as an interactive protocol, and described open-
and closed-loop policies are agent strategies

3. We introduced the noise-dependent cost functional JT(π; W) = ∑T
t=1 c(yt, ut)

Summary

1. We introduced dynamical systems xt+1 = f(xt, ut) + wt yt = g(xt) + et

2. We formulated control as an interactive protocol, and described open-
and closed-loop policies are agent strategies

3. We introduced the noise-dependent cost functional JT(π; W) = ∑T
t=1 c(yt, ut)

4. We briefly described classical noise models (fixed, random, worst-case).

Basics of Linear Control

Background: Linear Dynamical System
Recall: A linear dynamical system is

xt+1 = Axt + But + wt yt = Cxt + et

Background: Linear Dynamical System
Recall: A linear dynamical system is

xt+1 = Axt + But + wt yt = Cxt + et

dynamics model

Background: Linear Dynamical System
Recall: A linear dynamical system is

xt+1 = Axt + But + wt yt = Cxt + et

dynamics model observation model

Background: Linear Dynamical System
Recall: A linear dynamical system is

xt+1 = Axt + But + wt yt = Cxt + et

dynamics model observation model

Rationale: Local Taylor Approximation of Nonlinear Dynamics.

Linear Quadratic Optimal Control Problems
Linear Quadratic Optimal Control

JT(π; W) = ∑T
t=1 c(yt, ut) c(y, u) = y⊤Qy + u⊤Ru

Linear Quadratic Optimal Control Problems
Linear Quadratic Optimal Control

JT(π; W) = ∑T
t=1 c(yt, ut) c(y, u) = y⊤Qy + u⊤Ru

convex quadratic: Q, R ⪰ 0

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic Optimal Control

Stochastic Control Robust Control

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic Optimal Control

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)]

Stochastic Control Robust Control

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic Optimal Control

The control problem:
are i.i.d Gaussian (Kalman, LQG)

ℋ2 wt, et

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)]

Stochastic Control Robust Control

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic Optimal Control

The control problem:
are i.i.d Gaussian (Kalman, LQG)

ℋ2 wt, et

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

Stochastic Control Robust Control

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic Optimal Control

The control problem:
are i.i.d Gaussian (Kalman, LQG)

ℋ2 wt, et

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

The control problem:
 are worst case (Doyle)
ℋ∞

wt, et

Stochastic Control Robust Control

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥≤1

[JT(π; W)]

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥≤1

[JT(π; W)]

Theorem: If fully observed , state-feedback is optimal(yt ≡ xt)

yt

ut

ut = K⋆
t xt env.

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

Theorem: For general LQ control are linear dynamic policies are optimal:

yt

ut zt+1 = Aπzt + Bπyt

ut = Cπzt + Dπytenv.

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

Linear Quadratic Optimal Control Problems
Classical Linear Quadratic LQ Optimal Control

min
π

lim
T→∞

1
T

𝔼w,e[JT(π; W)] min
π

lim
T→∞

1
T

sup
∥w∥,∥e∥≤1

[JT(π; W)]

Important Takeaway: Linear Quadratic Control Problems admit
easy-to-express controllers.

Beyond LQ Control

Beyond LQ Control

Challenge 1: If costs/constraints are no longer quadratic, optimal control is
hard to describe, even if dynamics are linear.

Beyond LQ Control

Challenge 1: If costs/constraints are no longer quadratic, optimal control is
hard to describe, even if dynamics are linear.

Example (control, Borelli ’03): ℓ1 c(y, u) = ∥y∥1 + ∥u∥2

Beyond LQ Control

Challenge 1: If costs/constraints are no longer quadratic, optimal control is
hard to describe, even if dynamics are linear.

Challenge 2: Optimizing over feedback (static or dynamic) is non-
convex and can be computationally hard:

Example (control, Borelli ’03): ℓ1 c(y, u) = ∥y∥1 + ∥u∥2

Beyond LQ Control

Challenge 1: If costs/constraints are no longer quadratic, optimal control is
hard to describe, even if dynamics are linear.

Challenge 2: Optimizing over feedback (static or dynamic) is non-
convex and can be computationally hard:

This is because, e.g. in full observation xt = ∑
s

(A + BK)t−s(Bus + ws)

Example (control, Borelli ’03): ℓ1 c(y, u) = ∥y∥1 + ∥u∥2

Beyond LQ Control

Challenges: Direct optimization over feedback controllers can be hard, and
exact optimal control laws can be hard to express.

Beyond LQ Control

Insight: Optimization restricted to linear policies can be
reparametrized to be convex if costs/constraints are convex

Challenges: Direct optimization over feedback controllers can be hard, and
exact optimal control laws can be hard to express.

Beyond LQ Control

Insight: Optimization restricted to linear policies can be
reparametrized to be convex if costs/constraints are convex

Powerful Observation: Youla-Kućera ’76, Zames ’81 (IO), Anderson et al. ’19 (SLS)

Challenges: Direct optimization over feedback controllers can be hard, and
exact optimal control laws can be hard to express.

Summary

Summary

1. We introduced linear dynamical systems
xt+1 = Axt + But + wt
yt = Cxt + et

Summary

1. We introduced linear dynamical systems
xt+1 = Axt + But + wt
yt = Cxt + et

2. We described the optimal control laws for linear-quadratic (LQ) control

Summary

1. We introduced linear dynamical systems
xt+1 = Axt + But + wt
yt = Cxt + et

2. We described the optimal control laws for linear-quadratic (LQ) control

3. We described computational difficulties beyond the LQ regime

Summary

1. We introduced linear dynamical systems
xt+1 = Axt + But + wt
yt = Cxt + et

2. We described the optimal control laws for linear-quadratic (LQ) control

3. We described computational difficulties beyond the LQ regime

4. We hinted at convex relaxations as a tool for efficient optimization.

The Non-Stochastic Control
Problem

The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

difficulty

i.i.d. (ℋ2) worst-case (ℋ∞)

The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

difficulty

i.i.d. (ℋ2) worst-case (ℋ∞)

something else?

The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

i.i.d. worst-case

Naively: for every minπ JT(π; W) W

The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

i.i.d. worst-case

Naively: for every minπ JT(π; W) W

“What would we pick if we knew noise in hindsight”π W

The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

i.i.d. worst-case

Naively: for every minπ JT(π; W) W

“What would we pick if we knew noise in hindsight”π W
But of course: impossible, and leads to open loop control

The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

i.i.d. worst-case

Naively: for every minπ JT(π; W) W

The Non-Stochastic Control Problem

Motivating Question: What lies between i.i.d. and worst case?

i.i.d. worst-case

Naively: for every minπ JT(π; W) W

We will allow adversarial noise, but introduce regret to
measure performance

Solution Concept: Regret
“i’ve had a few”

Solution Concept: Regret

JT (𝔸; W) = ∑T
t=1 c(y𝔸

t , u𝔸
t)

“i’ve had a few”

Solution Concept: Regret

 for algorithm𝔸

JT (𝔸; W) = ∑T
t=1 c(y𝔸

t , u𝔸
t)

“i’ve had a few”

Solution Concept: Regret

 for algorithm𝔸

JT (𝔸; W) = ∑T
t=1 c(y𝔸

t , u𝔸
t)

also called ‘learner’ or ‘agent’

“i’ve had a few”

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

 for algorithm𝔸

JT (𝔸; W) = ∑T
t=1 c(y𝔸

t , u𝔸
t)

also called ‘learner’ or ‘agent’

“i’ve had a few”

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

 for algorithm𝔸

JT (𝔸; W) = ∑T
t=1 c(y𝔸

t , u𝔸
t) JT (π; W) = ∑T

t=1 c(yπ
t , uπ

t)

counterfactual cost under policy π ∈ Π
also called ‘learner’ or ‘agent’

“i’ve had a few”

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

JT (π; W)JT (𝔸; W) − min
π∈Π

RegT (𝔸; Π) =

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

JT (π; W)JT (𝔸; W) − min
π∈Π

RegT (𝔸; Π) =

excess cost of
algorithm

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

JT (π; W)JT (𝔸; W) − min
π∈Π

RegT (𝔸; Π) =

excess cost of
algorithm

best-in-
hindsight

(with full knowledge of disturbances)

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Goal: (vanishing regret as fraction of horizon) for all RegT = o(T) W

Solution Concept: Regret

Fix a class of comparator policies π ∈ Π

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Goal: (vanishing regret as fraction of horizon) for all RegT = o(T) W
“competing with ”Π

Solution Concept: Regret

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Why a restricted comparator class?

Solution Concept: Regret

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Why a restricted comparator class?

1. If is unrestricted, comparator cost is open-loop optimal plan.Π

Solution Concept: Regret

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Why a restricted comparator class?

1. If is unrestricted, comparator cost is open-loop optimal plan.Π

we can embed a prediction problem where comparator has
zero cost (perfect knowledge), but learner has cost.Ω(T)

Solution Concept: Regret

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Why a restricted comparator class?

1. If is unrestricted, comparator cost is open-loop optimal plan.Π

Solution Concept: Regret

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Why a restricted comparator class?

1. If is unrestricted, comparator cost is open-loop optimal plan.Π

2. We can restrict to make optimization computationally efficient. Π

Solution Concept: Regret

RegT (𝔸; Π) = JT (π; W)JT (𝔸; W) − min
π∈Π

Why a restricted comparator class?

1. If is unrestricted, comparator cost is open-loop optimal plan.Π

2. We can restrict to make optimization computationally efficient. Π
Key Idea: Optimizing over linear policies can efficient, even when optimal control is not.

Compared to What? For linear dynamics.

i.i.d. worst-case

What class of comparator policies ?π ∈ Π

Compared to What? For linear dynamics.

i.i.d. worst-case

Informally: is the set of all linear policies
that stabilize the dynamics

Π

What class of comparator policies ?π ∈ Π

Compared to What? For linear dynamics.

i.i.d. worst-case

Informally: is the set of all linear policies
that stabilize the dynamics

Π

What class of comparator policies ?π ∈ Π

For LQ control, these are all linear policies that are
stable with exponential decay

Compared to What? For linear dynamics.

i.i.d. worst-case

Informally: is the set of all linear policies
that stabilize the dynamics

Π

What class of comparator policies ?π ∈ Π

For LQ control, these are all linear policies that are
stable with exponential decay

Nonstochastic Control As an Interactive Protocol

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Nonstochastic Control As an Interactive Protocol

For each time , t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Nonstochastic Control As an Interactive Protocol

For each time , t

1. Nature picks noise (wt, et)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Nonstochastic Control As an Interactive Protocol

For each time , t

1. Nature picks noise (wt, et)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

(adversarially!)

Nonstochastic Control As an Interactive Protocol

For each time , t

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

(adversarially!)

Nonstochastic Control As an Interactive Protocol

For each time , t

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

(adversarially!)

Nonstochastic Control As an Interactive Protocol

For each time , t

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve xt+1 = f(xt, ut) + wt

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

(adversarially!)

Nonstochastic Control As an Interactive Protocol

For each time , t

1. Nature picks noise (wt, et)

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve xt+1 = f(xt, ut) + wt

Goal: make . RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W) = o(T)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

(adversarially!)

Nonstochastic Control As an Interactive Protocol

1. Nature picks noise and a cost (wt, et) ct

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve , suffer xt+1 = f(xt, ut) + wt ct(yt, ut)

Goal: make . RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W) = o(T)

For each time , t

Nonstochastic Control As an Interactive Protocol

1. Nature picks noise and a cost (wt, et) ct

2. Dynamics reveal yt = g(xt) + et

3. Control agent picks ut

4. Dynamics evolve , suffer xt+1 = f(xt, ut) + wt ct(yt, ut)

Goal: make . RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W) = o(T)
defined with changing costs

For each time , t

Linear Nonstochastic Control: Interactive Protocol

For each time , t

1. Nature picks noise and a cost (wt, et) ct

2. Dynamics reveal yt = Cxt + et

3. Control agent picks ut

4. Dynamics evolve , suffer xt+1 = Axt + But + wt ct(yt, ut)

Goal: make . RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W) = o(T)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Summary

Summary

1. Non-stochastic control is an intermediate between stochastic and robust

Summary

1. Non-stochastic control is an intermediate between stochastic and robust

2. We define regret to a restricted comparator class as a performance yardstick
when noise is possibly adversarial

Summary

1. Non-stochastic control is an intermediate between stochastic and robust

2. We define regret to a restricted comparator class as a performance yardstick
when noise is possibly adversarial

3. We formulated the non-stochastic control protocol, including changing costs.

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

How to compete
benchmark online,

despite unknown costs/
disturbances

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

How to efficiently
parameterize control

policies ?π ∈ Π

How to compete
benchmark online,

despite unknown costs/
disturbances

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

How to efficiently
parameterize control

policies ?π ∈ Π

How to compete
benchmark online,

despite unknown costs/
disturbances

Tool: Online Convex Optimization

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

How to efficiently
parameterize control

policies ?π ∈ Π

How to compete
benchmark online,

despite unknown costs/
disturbances

Tool: Convex Control Parametrization Tool: Online Convex Optimization

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Topics Covered

Roadmap: Topics Covered

1. GPC: Fully Observed, Known-Dynamics

Roadmap: Topics Covered

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics

Roadmap: Topics Covered

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics

3. Unknown Dynamics: System Identification

Roadmap: Topics Covered

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics

3. Unknown Dynamics: System Identification

4. Optimal Regret: Leveraging Curvature

Roadmap: Topics Covered

1. GPC: Fully Observed, Known-Dynamics

2. Nature’s Y’s: Partially Observed, Known-Dynamics

3. Unknown Dynamics: System Identification

4. Optimal Regret: Leveraging Curvature

5. Open Problems / Hardness Results

Roadmap: Assumptions

Roadmap: Assumptions

Assumption 1: Costs are convex, -Lipschitzct(x, u) O(1)

Roadmap: Assumptions

Assumption 1: Costs are convex, -Lipschitzct(x, u) O(1)

Assumption 2: Disturbances are uniformly bounded sup
t

∥wt∥,∥et∥ ≤ 1

Roadmap: Assumptions

Assumption 1: Costs are convex, -Lipschitzct(x, u) O(1)

Assumption 2: Disturbances are uniformly bounded sup
t

∥wt∥,∥et∥ ≤ 1

(can be relaxed)

(can be relaxed)

The Gradient Perturbation
Controller (GPC)

Roadmap

1. GPC: Fully Observed, Known-Dynamics

2.

3. fi

4.

5.

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. Fully Observed: yt ≡ xt

2. Known Dynamics: xt+1 = Axt + But + wt

3. Stable Dynamics: ∥As∥ ≤ Cρs

Warmup: Known System + Stable Dynamics

1. Fully Observed: yt ≡ xt

2. Known Dynamics: xt+1 = Axt + But + wt

3. Stable Dynamics: ∥As∥ ≤ Cρs

Warmup: Known System + Stable Dynamics

(Don’t worry: all will be relaxed)

1. Fully Observed: yt ≡ xt

2. Known Dynamics: xt+1 = Axt + But + wt

3. Stable Dynamics: ∥As∥ ≤ Cρs

stable

Warmup: Known System + Stable Dynamics

(Don’t worry: all will be relaxed)

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

How to compete
benchmark online,

despite unknown costs/
disturbances

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

How to efficiently
parameterize control

policies ?π ∈ Π

How to compete
benchmark online,

despite unknown costs/
disturbances

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

How to efficiently
parameterize control

policies ?π ∈ Π

How to compete
benchmark online,

despite unknown costs/
disturbances

Tool: Online Convex Optimization

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Roadmap: Core Challenges

Goal: make small. RegT(𝔸; Π) = JT(𝔸; W) − minπ∈Π JT(π; W)

How to efficiently
parameterize control

policies ?π ∈ Π

How to compete
benchmark online,

despite unknown costs/
disturbances

Tool: Convex Control Parametrization Tool: Online Convex Optimization

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

The Gradient Perturbation Controller

For t = 1,2,…

The Gradient Perturbation Controller

For t = 1,2,…
(convex

parametrization)1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

The Gradient Perturbation Controller

For t = 1,2,…
(convex

parametrization)1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

(online gradient
descent)

2. where is convexMt+1 ← Mt − ηt ∇F̃t(Mt) F̃t

Goal: Known System + Stable Dynamics

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Goal: Known System + Stable Dynamics

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Goal: Known System + Stable Dynamics

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)
closed loop dynamics

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Goal: Known System + Stable Dynamics

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)
closed loop dynamics

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Includes optimal controllersℋ2, ℋ∞

Goal: Known System + Stable Dynamics

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Goal: Known System + Stable Dynamics

Theorem: Gradient Perturbation Control (GPC) attains

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πK; W) ≤ Õ(T)

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Goal: Known System + Stable Dynamics

Theorem: Gradient Perturbation Control (GPC) attains

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πK; W) ≤ Õ(T)

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Goal: Known System + Stable Dynamics

Theorem: Gradient Perturbation Control (GPC) attains

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πK; W) ≤ Õ(T)

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Includes optimal controllersℋ2, ℋ∞

Goal: Known System + Stable Dynamics

Theorem: Gradient Perturbation Control (GPC) attains

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πK; W) ≤ Õ(T)

dynamicsu = Kx

xt

ut

w1:T

 Πfeedback := {π(x) = Kx : A + BK is (C, ρ) stable)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Includes optimal controllersℋ2, ℋ∞ but non-convex!

Define: The Disturbance Feedback Control (DFC) parameterization:

uM
t = ∑k

i=1 M[i]wt−i

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Define: The Disturbance Feedback Control (DFC) parameterization:

uM
t = ∑k

i=1 M[i]wt−i

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Define: The Disturbance Feedback Control (DFC) parameterization:

Equivalent to the SLS Parametrization of (Anderson et al, 2019)

uM
t = ∑k

i=1 M[i]wt−i

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Define: The Disturbance Feedback Control (DFC) parameterization:

Equivalent to the SLS Parametrization of (Anderson et al, 2019)

uM
t = ∑k

i=1 M[i]wt−i

this is implementable online with known dynamics: wt = xt+1 − (Axt + But)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization

uM
t = ∑k

i=1 M[i]wt−i independent of past control inputs

Define: The Disturbance Feedback Control (DFC) parameterization:

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization

uM
t = ∑k

i=1 M[i]wt−i independent of past control inputs

dynamicsu = Kx

xt

ut

w1:T

unroll dynamics

wt

uM
t

xt

wt

Define: The Disturbance Feedback Control (DFC) parameterization:

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization

uM
t = ∑k

i=1 M[i]wt−i independent of past control inputs

dynamicsu = Kx

xt

ut

w1:T

unroll dynamics

wt

uM
t

xt

wt

Define: The Disturbance Feedback Control (DFC) parameterization:

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

(efficient computation of counterfactuals)

Tool 1: Convex Controller Parametrization
Observation: The mapping from is linear M → (xM

t , uM
t)

uM
t = ∑k

i=1 M[i]wt−i independent of past control inputs

dynamics

wt

uM
t

xt

wt

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Observation: The mapping from is linear M → (xM

t , uM
t)

uM
t = ∑k

i=1 M[i]wt−i independent of past control inputs

dynamics

wt

uM
t

xt

wt

Corollary: Assuming convex costs, mapping
 is convex M → JT(πM; W) := ∑T

t=1 ct(xM
t , uM

t)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Observation: The mapping from is linear M → (xM

t , uM
t)

uM
t = ∑k

i=1 M[i]wt−i

dynamics

wt

uM
t

xt

wt

Corollary: By linearity of dynamics, mapping
 is convex M → JT(πM; W) := ∑T

t=1 ct(xM
t , uM

t)

Therefore, in hindsight, we can
efficiently optimize over controllers.

In learning theory, we call this improper learning.

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization

Theorem: Consider any controller such that is stable.K A + BK (C, ρ)
Then, a DFC controller with s.t.∃ uM

t = ∑k
i=0 M[i]wt−i ∥M∥ ≤ O⋆(1)

, where supt ∥xK
t − xM

t ∥ ≤ O⋆(ρk) O⋆(1) = poly(C, (1 − ρ)−1)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization

Theorem: Consider any controller such that is stable.K A + BK (C, ρ)
Then, a DFC controller with s.t.∃ uM

t = ∑k
i=0 M[i]wt−i ∥M∥ ≤ O⋆(1)

, where supt ∥xK
t − xM

t ∥ ≤ O⋆(ρk) O⋆(1) = poly(C, (1 − ρ)−1)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

states under K states under M

Tool 1: Convex Controller Parametrization

Theorem: Consider any controller such that is stable.K A + BK (C, ρ)
Then, a DFC controller with s.t.∃ uM

t = ∑k
i=0 M[i]wt−i ∥M∥ ≤ O⋆(1)

, where supt ∥xK
t − xM

t ∥ ≤ O⋆(ρk) O⋆(1) = poly(C, (1 − ρ)−1)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization

Informally: DFC Controllers are an improper relaxation of static feedback
controllers

Theorem: Consider any controller such that is stable.K A + BK (C, ρ)
Then, a DFC controller with s.t.∃ uM

t = ∑k
i=0 M[i]wt−i ∥M∥ ≤ O⋆(1)

, where supt ∥xK
t − xM

t ∥ ≤ O⋆(ρk) O⋆(1) = poly(C, (1 − ρ)−1)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Corollary: Let denote all policies makes s.t.
is stable. Then, the class of all memory-k controllers with

Πfeedback π(x) = Kx A + BK
(C, ρ) Πgpc

uM
t = ∑k

i=0 M[i]wt−i ∑i ∥M[i]∥ ≤ O⋆(1)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Corollary: Let denote all policies makes s.t.
is stable. Then, the class of all memory-k controllers with

Πfeedback π(x) = Kx A + BK
(C, ρ) Πgpc

uM
t = ∑k

i=0 M[i]wt−i ∑i ∥M[i]∥ ≤ O⋆(1)

inf
M

JT(Πgpc) − inf
K

JT(Πfeedback) ≤ O⋆(Tρk)

satisfies

(assuming
Lipschitz

costs)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Corollary: Let denote all policies makes s.t.
is stable. Then, the class of all memory-k controllers with

Πfeedback π(x) = Kx A + BK
(C, ρ) Πgpc

uM
t = ∑k

i=0 M[i]wt−i ∑i ∥M[i]∥ ≤ O⋆(1)

suffices to optimize over Πgpc

inf
M

JT(Πgpc) − inf
K

JT(Πfeedback) ≤ O⋆(Tρk)

satisfies

(assuming
Lipschitz

costs)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Summary

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Summary

1. Efficient optimization mapping from
 is convex M → JT(πM; W) := ∑T

t=1 ct(xM
t , uM

t)
dynamics

wt

uM
t

xt

wt

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 1: Convex Controller Parametrization
Summary

2. For bounded of memory k:M inf
M

JT(Πgpc) − inf
K

JT(Πfeedback) ≤ O⋆(Tρk)

1. Efficient optimization mapping from
 is convex M → JT(πM; W) := ∑T

t=1 ct(xM
t , uM

t)
dynamics

wt

uM
t

xt

wt

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

The Gradient Perturbation Controller

For t = 1,2,…

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

The Gradient Perturbation Controller

For t = 1,2,…

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

(online gradient
descent)

2. where is convexMt+1 ← Mt − ηt ∇F̃t(Mt) F̃t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 2: Online Convex Optimization

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

For times t = 1,2,…,

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

For times t = 1,2,…,

Learner selects action θt ∈ Θ

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

For times t = 1,2,…,

Learner selects action θt ∈ Θ
Nature selects convex loss function ft : Θ → ℝ

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

Goal: Make OcoRegT := ∑T
t=1 ft(θt) − infθ∈Θ ∑T

t=1 ft(θ) ≤ o(T)

For times t = 1,2,…,

Learner selects action θt ∈ Θ
Nature selects convex loss function ft : Θ → ℝ

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

Goal: Make OcoRegT := ∑T
t=1 ft(θt) − infθ∈Θ ∑T

t=1 ft(θ) ≤ o(T)

realized loss

For times t = 1,2,…,

Learner selects action θt ∈ Θ
Nature selects convex loss function ft : Θ → ℝ

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

Goal: Make OcoRegT := ∑T
t=1 ft(θt) − infθ∈Θ ∑T

t=1 ft(θ) ≤ o(T)

realized loss best-in-hindsight

For times t = 1,2,…,

Learner selects action θt ∈ Θ
Nature selects convex loss function ft : Θ → ℝ

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

For times t = 1,2,…,

Learner selects action θt ∈ Θ
Nature selects convex loss function ft : Θ → ℝ

Intuition: OcoRegT := ∑T
t=1 ft(θt) − infθ∈Θ ∑T

t=1 ft(θ) ≤ o(T)

Tool 2: Online Convex Optimization

Protocol: Online Convex Optimization.

For times t = 1,2,…,

Learner selects action θt ∈ Θ
Nature selects convex loss function ft : Θ → ℝ

Intuition: OcoRegT := ∑T
t=1 ft(θt) − infθ∈Θ ∑T

t=1 ft(θ) ≤ o(T)

forces learning under adversarial uncertainty!

Tool 2: Online Convex Optimization

Algorithm: Online Gradient Optimization.

For times t = 1,2,…,

Tool 2: Online Convex Optimization

Algorithm: Online Gradient Optimization.

For times t = 1,2,…,

Learner updates θt+1 = θt − ηt ∇f(θt)

Tool 2: Online Convex Optimization

Algorithm: Online Gradient Optimization.

For times t = 1,2,…,

Learner updates θt+1 = θt − ηt ∇f(θt)

step size

Tool 2: Online Convex Optimization

Algorithm: Online Gradient Optimization.

For times t = 1,2,…,

Learner updates θt+1 = θt − ηt ∇f(θt)

step size gradient (or convex subgradient)

Tool 2: Online Convex Optimization

Algorithm: Online Gradient Descent (OGD).

For times t = 1,2,…,

Learner updates θt+1 = θt − ηt ∇f(θt)

Tool 2: Online Convex Optimization

Algorithm: Online Gradient Descent (OGD).

For times t = 1,2,…,

Learner updates θt+1 = θt − ηt ∇f(θt)

Theorem (Zinkevich ’03): Suppose that and each is
. Then OGD with step size satisfies

Diam(Θ) ≤ D ft
G-Lipschitz ηt = (DG) ⋅ 1

t

Tool 2: Online Convex Optimization

Algorithm: Online Gradient Descent (OGD).

For times t = 1,2,…,

Learner updates θt+1 = θt − ηt ∇f(θt)

Theorem (Zinkevich ’03): Suppose that and each is
. Then OGD with step size satisfies

Diam(Θ) ≤ D ft
G-Lipschitz ηt = (DG) ⋅ 1

t

OcoRegT := ∑T
t=1 ft(θt) − infθ∈Θ ∑T

t=1 ft(θ) ≤ 2DG T

Tool 2’: Reducing Online Control to OCO

Protocol: Online Control over GPC Parameterization

For times t = 1,2,…,

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Learner selects action , and executes Mt u𝔸
t = ∑k

i=0 M[i]
t wt−i

Tool 2’: Reducing Online Control to OCO

Protocol: Online Control over GPC Parameterization

For times t = 1,2,…,

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Learner selects action , and executes Mt u𝔸
t = ∑k

i=0 M[i]
t wt−i

Nature selects convex loss function and noise ct wt

Tool 2’: Reducing Online Control to OCO

Protocol: Online Control over GPC Parameterization

For times t = 1,2,…,

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Learner selects action , and executes Mt u𝔸
t = ∑k

i=0 M[i]
t wt−i

Nature selects convex loss function and noise ct wt

Tool 2’: Reducing Online Control to OCO

Protocol: Online Control over GPC Parameterization

For times t = 1,2,…,

Learner suffers ct(x𝔸
t , u𝔸

t)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Learner selects action , and executes Mt u𝔸
t = ∑k

i=0 M[i]
t wt−i

Nature selects convex loss function and noise ct wt

Tool 2’: Reducing Online Control to OCO

Protocol: Online Control over GPC Parameterization

For times t = 1,2,…,

Learner suffers ct(x𝔸
t , u𝔸

t)
Dynamics evolve x𝔸

t+1 = Ax𝔸
t + Bu𝔸

t + wt

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 2’: Reducing Online Control to OCO

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. = true algorithm costct(x𝔸
t , u𝔸

t)

Tool 2’: Reducing Online Control to OCO

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. = true algorithm costct(x𝔸
t , u𝔸

t)

Tool 2’: Reducing Online Control to OCO

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. = true algorithm costct(x𝔸
t , u𝔸

t)

Tool 2’: Reducing Online Control to OCO

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. = true algorithm costct(x𝔸
t , u𝔸

t)

Tool 2’: Reducing Online Control to OCO

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Specifically F̃t(M) = Ft(M, …, M) = ct (∑k
i=1 Ai−1BuM

t−i, uM
t)

1. = true algorithm costct(x𝔸
t , u𝔸

t)

Tool 2’: Reducing Online Control to OCO

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

This is convex in !M

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Specifically F̃t(M) = Ft(M, …, M) = ct (∑k
i=1 Ai−1BuM

t−i, uM
t)

Tool 2’: Reducing Online Control to OCO
1. = true algorithm costct(x𝔸

t , u𝔸
t)

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 2’: Reducing Online Control to OCO
1. = true algorithm costct(x𝔸

t , u𝔸
t)

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Update Mt+1 ← Mt − η∇F̃t(Mt)

Tool 2’: Reducing Online Control to OCO
1. = true algorithm costct(x𝔸

t , u𝔸
t)

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Update Mt+1 ← Mt − η∇F̃t(Mt) Online Gradient Descent

Tool 2’: Reducing Online Control to OCO
1. = true algorithm costct(x𝔸

t , u𝔸
t)

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

⚠⚠Warning: Technical Part⚠⚠

Tool 2’: Reducing Online Control to OCO
1. = true algorithm costct(x𝔸

t , u𝔸
t)

2. = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, us ← uMs
s , t − k ≤ s ≤ t

counterfactual cost with memory k

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

⚠⚠Warning: Technical Part⚠⚠

Tool 2’: Reducing Online Control to OCO

2. = cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1. = true algorithm costct(x𝔸
t , u𝔸

t)

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 2’: Reducing Online Control to OCO

2. = cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1. = true algorithm costct(x𝔸
t , u𝔸

t)

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

= ∑T
t=1 ct(x𝔸

t , u𝔸
t) − infM∈Πgpc

∑T
t=1 ct(xM

t , uM
t) + O⋆(Tρk)

Tool 2’: Reducing Online Control to OCO

2. = cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1. = true algorithm costct(x𝔸
t , u𝔸

t)

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

= ∑T
t=1 ct(x𝔸

t , u𝔸
t) − infM∈Πgpc

∑T
t=1 ct(xM

t , uM
t) + O⋆(Tρk)

= ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) + O⋆(Tρk)

Tool 2’: Reducing Online Control to OCO

2. = cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1. = true algorithm costct(x𝔸
t , u𝔸

t)

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

= ∑T
t=1 ct(x𝔸

t , u𝔸
t) − infM∈Πgpc

∑T
t=1 ct(xM

t , uM
t) + O⋆(Tρk)

= ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) + O⋆(Tρk)

Online Convex Optimization with Memory

Tool 2’: Reducing Online Control to OCO

2. = cost with memory kFt(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← uM
t−ℓ

1. = true algorithm costct(x𝔸
t , u𝔸

t)

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

= ∑T
t=1 ct(x𝔸

t , u𝔸
t) − infM∈Πgpc

∑T
t=1 ct(xM

t , uM
t) + O⋆(Tρk)

= ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) + O⋆(Tρk)

Online Convex Optimization with Memory stability

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. Ignore long history: = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← ∑k
i=0 M[i]wt−ℓ−i

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. Ignore long history: = Ft(Mt, …, Mt−k) ct(xt, ut) ∣ xt−k ← 0, ut−ℓ ← ∑k
i=0 M[i]wt−ℓ−i

2. Take gradient updates as if you was not changing. Mt

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Theorem (OCO with Memory, Anava ’13): If , then ηt = O(1/ t)

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Theorem (OCO with Memory, Anava ’13): If , then ηt = O(1/ t)

≤ ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) ≤ O(k2 T)

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Theorem (OCO with Memory, Anava ’13): If , then ηt = O(1/ t)

≤ ∑T
t=1 Ft(Mt, …, Mt−k) − infM ∑T

t=1 Ft(M, …, M) ≤ O(k2 T)

Intuition: Combine the standard regret for OCO with bound that
|Ft(Mt, …, Mt−k) − F̃t(M) | ≤ O⋆(1) ⋅ ∑1≤ℓ,j,≤k ηt−i ≤ k2ηt−k ≲ O⋆(k2 T)

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

Corollary: If , ηt = O(1/ t) k ≫ log T

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

Corollary: If , ηt = O(1/ t) k ≫ log T

RegT(𝔸; Πfeedback) ≤ O⋆(k2 T + Tρk) = Õ(T)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Tool 2’: Reducing Online Control to OCO
RegT(𝔸; Πfeedback) ≤ ∑T

t=1 Ft(Mt, …, Mt−k) − infM ∑T
t=1 Ft(M, …, M) + O⋆(Tρk)

F̃t(M) = Ft(M, …, M)Mt+1 = Mt − ηt ∇F̃t(Mt)

Algorithm: Gradient-Perturbation Controller (GPC)

Corollary: If , ηt = O(1/ t) k ≫ log T

RegT(𝔸; Πfeedback) ≤ O⋆(k2 T + Tρk) = Õ(T) finally! we are done :)

ut ← uM
t

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Summary: Gradient Perturbation Controller

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = 1,2,…

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Summary: Gradient Perturbation Controller

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = 1,2,…

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

2. where is convexMt ← Mt − ηt ∇F̃t(Mt) F̃t

Summary: Gradient Perturbation Controller

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = 1,2,…

Theorem: Gradient Perturbation Control (GPC) attains

RegT(𝔸; Πfeedback) = JT(𝔸; W) − infπK∈Πfeedback
JT(πM; W) ≤ Õ(T)

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

2. where is convexMt ← Mt − ηt ∇F̃t(Mt) F̃t

From Stable to Stabilized

Previously, we assumed stable dynamics: ∥As∥ ≤ Cρs

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

From Stable to Stabilized

Previously, we assumed stable dynamics: ∥As∥ ≤ Cρs

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Here, we assume we know any such that:
is closed-loop stable

K0 ∥(A + BK0)s∥ ≤ Cρs

From Stable to Stabilized

Previously, we assumed stable dynamics: ∥As∥ ≤ Cρs

e.g. f you know the dynamics, you can solve an LQR problem to get K0

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Here, we assume we know any such that:
is closed-loop stable

K0 ∥(A + BK0)s∥ ≤ Cρs

From Stable to Stabilized

Previously, we assumed stable dynamics: ∥As∥ ≤ Cρs

e.g. f you know the dynamics, you can solve an LQR problem to get K0

*stay tuned for if you don’t know K0

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Here, we assume we know any such that:
is closed-loop stable

K0 ∥(A + BK0)s∥ ≤ Cρs

From Stable to Stabilized

Assume given any such that: is closed-
loop stable

K0 ∥(A + BK0)s∥ ≤ Cρs

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

From Stable to Stabilized

Assume given any such that: is closed-
loop stable

K0 ∥(A + BK0)s∥ ≤ Cρs

Theorem: GPC with attains ut ← K0xt+∑k
i=0 M[i]wt−i

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

RegT(𝔸; Πfeedback) ≤ Õ(T)

From Stable to Stabilized

Assume given any such that: is closed-
loop stable

K0 ∥(A + BK0)s∥ ≤ Cρs

Theorem: GPC with attains ut ← K0xt+∑k
i=0 M[i]wt−i

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

RegT(𝔸; Πfeedback) ≤ Õ(T)

From Stable to Stabilized

Assume given any such that: is closed-
loop stable

K0 ∥(A + BK0)s∥ ≤ Cρs

Theorem: GPC with attains ut ← K0xt+∑k
i=0 M[i]wt−i

Proof: Same, but fold into dynamicsK0

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Summary

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Summary

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. We introduce and analyze the Gradient Perturbation Controller (GPC)

Summary

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. We introduce and analyze the Gradient Perturbation Controller (GPC)

2. It is built on Disturbance Feedback Control (DFC) as convex, “improper”
representation of linear controllers (equivalent to SLS, Anderson et al. ’19)

Summary

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

1. We introduce and analyze the Gradient Perturbation Controller (GPC)

2. It is built on Disturbance Feedback Control (DFC) as convex, “improper”
representation of linear controllers (equivalent to SLS, Anderson et al. ’19)

3. We build on the Online Convex Optimization (OCO) framework to develop a
gradient-based controller

Generalizations

Roadmap

1.

2. Nature’s Y’s: Partially Observed, Known-Dynamics

3. Unknown Dynamics: System Identification

4. Optimal Regret: Leveraging Curvature

5.

Roadmap

1.

2. Nature’s Y’s: Partially Observed, Known-Dynamics

3. fi

4.

5.

From Full Observation to Nature’s Y’s

From Full Observation to Nature’s Y’s

Goal: Compete the linear controllers for partially observed yt = Cxt + et

From Full Observation to Nature’s Y’s

Goal: Compete the linear controllers for partially observed yt = Cxt + et

Challenge 1: GPC controller needed to “see” , which are now hiddenwt

From Full Observation to Nature’s Y’s

Goal: Compete the linear controllers for partially observed yt = Cxt + et

Challenge 1: GPC controller needed to “see” , which are now hiddenwt

yt

ut zt+1 = Aπzt + Bπyt

ut = Cπzt + Dπyt

Challenge 2: Static feedback on , , is suboptimal for partial
observation.

yt ut = Kyt

From Full Observation to Nature’s Y’s

Idea: Convex parametrization (control lang.) or improperness (learning lang.)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

Idea: Convex parametrization (control lang.) or improperness (learning lang.)

Define the Markov Operators yt = et+ ∑t
i=0 G[i]

w→ywt−i+G[i]
u→yut−i

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

Idea: Convex parametrization (control lang.) or improperness (learning lang.)

Define the Markov Operators yt = et+ ∑t
i=0 G[i]

w→ywt−i+G[i]
u→yut−i

G[i]
w→yw1:T

G[i]
u→yu1:T

+

et

yt

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

Idea: Convex parametrization (control lang.) or improperness (learning lang.)

Define the Markov Operators yt = et+ ∑t
i=0 G[i]

w→ywt−i+G[i]
u→yut−i

et

G[i]
w→yw1:T +

ynat
t

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

Idea: Convex parametrization (control lang.) or improperness (learning lang.)

Define the Markov Operators yt = et+ ∑t
i=0 G[i]

w→ywt−i+G[i]
u→yut−i

et

G[i]
w→yw1:T +

ynat
tNature’s Y’s ynat

t

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

et

G[i]
w→yw1:T +

ynat
t

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

Definition: Disturbance Feedback Control (DFC) uM
t = ∑t

i=0 M[i] ynat
t−i

et

G[i]
w→yw1:T +

ynat
t

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

Definition: Disturbance Feedback Control (DFC) uM
t = ∑t

i=0 M[i] ynat
t−i

et

G[i]
w→yw1:T +

ynat
t

uM
t

M

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

Definition: Disturbance Feedback Control (DFC) uM
t = ∑t

i=0 M[i] ynat
t−i

et

G[i]
w→yw1:T +

ynat
t

uM
t

M G[i]
u→y + yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s

Definition: Disturbance Feedback Control (DFC) uM
t = ∑t

i=0 M[i] ynat
t−i

et

G[i]
w→yw1:T +

ynat
t

uM
t

M G[i]
u→y + yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

convex control parametrization!
(equivalent: IO parametrization, Zames ’81)

From Full Observation to Nature’s Y’s

Definition: Disturbance Feedback Control (DFC) uM
t = ∑t

i=0 M[i] ynat
t−i

et

G[i]
w→yw1:T +

ynat
t

G[i]
u→yM

uM
t

+ yt

et

ynat
t = yt − Gu→y ⋆ u1:t

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

can be recovered

From Full Observation to Nature’s Y’s

Definition: Disturbance Feedback Control (DFC) uM
t = ∑t

i=0 M[i] ynat
t−i

et

G[i]
w→yw1:T +

ynat
t

G[i]
u→yM

uM
t

+ yt

et

ynat
t = yt − Gu→y ⋆ u1:t

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

this represents a
system purely as
sequence-to-sequence
(e.g. Sutskever, Vinyals, Le)

From Full Observation to Nature’s Y’s

Definition: Disturbance Feedback Control (DFC) uM
t = ∑t

i=0 M[i] ynat
t−i

et

G[i]
w→yw1:T +

ynat
t

G[i]
u→yM

uM
t

+ yt

et

yt = ynat
t + Gu→y ⋆ (∑k

i=1 M[i]ynat
i)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

this represents a
system purely as
sequence-to-sequence
(e.g. Sutskever, Vinyals, Le)

From Full Observation to Nature’s Y’s

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s
Assume Markov Operators* are -stable: (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s
Assume Markov Operators* are -stable: (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s): Any stabilizing, dynamic linear controller can be
approximated by the Disturbance Response Control (DRC)

uM
t = ∑t

i=0 M[i] ynat
t−i ∑i ∥M[i]∥ ≤ O⋆(1)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s
Assume Markov Operators* are -stable: (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s Regret): Online gradient descent with the Disturbance
Response Control (DRC)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s
Assume Markov Operators* are -stable: (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s Regret): Online gradient descent with the Disturbance
Response Control (DRC)

ut = ∑t
i=0 M[i]

t ynat
t−i Mt+1 = Mt − ηt ∇F̃t(Mt)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s
Assume Markov Operators* are -stable: (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s Regret): Online gradient descent with the Disturbance
Response Control (DRC)

ut = ∑t
i=0 M[i]

t ynat
t−i Mt+1 = Mt − ηt ∇F̃t(Mt)

inf
M

RegT(𝔸; Πdrc) ≤ Õ(T)obtains

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s
Assume Markov Operators* are -stable: (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s Regret): Online gradient descent with the Disturbance
Response Control (DRC)

ut = ∑t
i=0 M[i]

t ynat
t−i Mt+1 = Mt − ηt ∇F̃t(Mt)

Generalizes to known stabilizing controller (eg. LQG) via Youla-Kućera Par.

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Full Observation to Nature’s Y’s
Assume Markov Operators* are -stable: (C, ρ) max{∥G[i]

w→y∥, ∥G[i]
u→y∥} ≤ Cρi

Theorem (Nature’s Y’s Regret): Online gradient descent with the Disturbance
Response Control (DRC)

ut = ∑t
i=0 M[i]

t ynat
t−i Mt+1 = Mt − ηt ∇F̃t(Mt)

The entire algorithm can be defined using Markov operators (Improper)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

Summary

Summary

1. We study partial observability ()yt = Cxt + et

Summary

1. We study partial observability ()yt = Cxt + et

2. We introduce and analyze the Nature’s Y’s parameterization (DFC)

Summary

1. We study partial observability ()yt = Cxt + et

2. We introduce and analyze the Nature’s Y’s parameterization (DFC)

3. We show that the same rate of regret is achievable with essentially the same
principles.

Roadmap

1.

2.

3. Unknown Dynamics: System Identification

4.

5.

From Known to Unknown Dynamics

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Goal: Compete the linear controllers even if unknown(A, B, C)

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Goal: Compete the linear controllers even if unknown(A, B, C)

Challenge 1: DFC/GPC controller needed to know dynamics to recover or wt ynat
t

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Goal: Compete the linear controllers even if unknown(A, B, C)

Challenge 1: DFC/GPC controller needed to know dynamics to recover or wt ynat
t

Challenge 2: We need to dynamics to form to (simulated costs under)F̃t M

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Goal: Compete the linear controllers even if unknown(A, B, C)

Challenge 1: DFC/GPC controller needed to know dynamics to recover or wt ynat
t

Challenge 2: We need to dynamics to form to (simulated costs under)F̃t M

ynat
t G[i]

u→yM
uM

t
+ yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Goal: Compete the linear controllers even if unknown(A, B, C)

Challenge 1: DFC/GPC controller needed to know dynamics to recover or wt ynat
t

Challenge 2: We need to dynamics to form to (simulated costs under)F̃t M

ynat
t G[i]

u→yM
uM

t
+ yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

ynat
t G[i]

u→yM
uM

t
+ yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Step 1: For first steps, use and estimate T0 ut ∼ N(0,I) Gu→y

ynat
t G[i]

u→yM
uM

t
+ yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Step 1: For first steps, use and estimate T0 ut ∼ N(0,I) Gu→y

Step 2: Run DFC+OGD controller, replacing least squares estimate Gu→y Ĝu→y

ynat
t G[i]

u→yM
uM

t
+ yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Step 1: For first steps, use and estimate T0 ut ∼ N(0,I) Gu→y

Step 2: Run DFC+OGD controller, replacing least squares estimate Gu→y Ĝu→y

ynat
t G[i]

u→yM
uM

t
+ yt

et

Proposition: RegT ≤ Õ(1)(T + T∥Ĝls − G∥ + T0)
known regret cost for error cost for estimation

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

From Known to Unknown Dynamics

Step 1: For first steps, use and estimate T0 ut ∼ N(0,I) Gu→y

ynat
t G[i]

u→yM
uM

t
+ yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

Step 2: Run DFC+OGD controller, replacing least squares estimate Gu→y Ĝu→y

From Known to Unknown Dynamics

Step 1: For first steps, use and estimate T0 ut ∼ N(0,I) Gu→y

ynat
t G[i]

u→yM
uM

t
+ yt

et

Theorem: where RegT ≤ Õ(T2/3) T0 = T2/3

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

Step 2: Run DFC+OGD controller, replacing least squares estimate Gu→y Ĝu→y

From Known to Unknown Dynamics

Step 1: For first steps, use and estimate T0 ut ∼ N(0,I) Gu→y

ynat
t G[i]

u→yM
uM

t
+ yt

et

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

Step 2: Run DFC+OGD controller, replacing least squares estimate Gu→y Ĝu→y

From Known to Unknown Dynamics

Step 1: For first steps, use and estimate T0 ut ∼ N(0,I) Gu→y

ynat
t G[i]

u→yM
uM

t
+ yt

et

Conveniently: We only ever use and estimate the Markov operator.

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

Step 2: Run DFC+OGD controller, replacing least squares estimate Gu→y Ĝu→y

Summary

Summary

1. We study unknown dynamics

Summary

1. We study unknown dynamics

2. We combine OCO with estimating the Markov operator

Summary

1. We study unknown dynamics

2. We combine OCO with estimating the Markov operator

3. Everything works just by working with sequence-to-sequence , i.e. improper,
parameterization

Roadmap

1.

2.

3. fi

4. Optimal Regret: Leveraging Curvature

5.

Fast & Optimal Regret Rates

Fast & Optimal Regret Rates

Goal: How slow can we make as a function of ?RegT T

Fast & Optimal Regret Rates

Goal: How slow can we make as a function of ?RegT T

Also called a fast rate because we want as fast as possible RegT /T → 0

Fast & Optimal Regret Rates

Goal: How slow can we make as a function of ?RegT T

Also called a fast rate because we want as fast as possible RegT /T → 0

Assume: is -strongly convex: convexct(x, u) α ct(x, u) − α(∥x∥2 + ∥u∥2)/2

Fast & Optimal Regret Rates

Goal: How slow can we make as a function of ?RegT T

Also called a fast rate because we want as fast as possible RegT /T → 0

Assume: is -strongly convex: convexct(x, u) α ct(x, u) − α(∥x∥2 + ∥u∥2)/2

aka curvature: if is smooth: ct λmin(∇ 2c) ≥ α

Fast & Optimal Regret Rates

Goal: How slow can we make as a function of ?RegT T

Also called a fast rate because we want as fast as possible RegT /T → 0

Assume: is -strongly convex: convexct(x, u) α ct(x, u) − α(∥x∥2 + ∥u∥2)/2

aka curvature: if is smooth: ct λmin(∇ 2c) ≥ α

accelerate learning
+ optimization

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ(T /α) unknown dynamics

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ(T /α) unknown dynamics

Compare to and regret, previouslyT T2/3

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ(T /α) unknown dynamics

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ(T /α) unknown dynamics

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Up to log factors, optimal even in online LQR (unknown A, B)

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ(T /α) unknown dynamics

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Up to log factors, optimal even in online LQR (unknown A, B)

fixed quadratic cost, i.i.d. Gaussian noise, full observation y ≡ xt

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ(T /α) unknown dynamics

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ(T /α) unknown dynamics

Takeaway: For s.c. costs, unknown dynamics determines regret

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Fast & Optimal Regret Rates

Theorem: If is -strongly convex, there exists algorithms such thatct(x, u) α

1. RegT ≤ poly(log T)/α known dynamics

2. RegT ≤ Õ(T /α) unknown dynamics

Takeaway: For s.c. costs, unknown dynamics determines regret

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

changing costs and adversarial noise only affect rates logarithmically.

Algorithm: Fast Rates

Agrawal, Hazan, Singh “Logarithmic Regret for Online Control”, 2019
Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…
Optional: Estimate dynamics for first steps. T0

Algorithm: Fast Rates

Agrawal, Hazan, Singh “Logarithmic Regret for Online Control”, 2019
Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − ηt ∇F̃t(Mt)

Optional: Estimate dynamics for first steps. T0

Algorithm: Fast Rates

Agrawal, Hazan, Singh “Logarithmic Regret for Online Control”, 2019
Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − ηt ∇F̃t(Mt)

Theorem: If noise is stochastic/persistent excitation,
attains fast rate

ηt ← O(1/α)

Optional: Estimate dynamics for first steps. T0

Algorithm: Fast Rates

Agrawal, Hazan, Singh “Logarithmic Regret for Online Control”, 2019
Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − ηt ∇F̃t(Mt)

Theorem: If noise is stochastic/persistent excitation,
attains fast rate

ηt ← O(1/α)

Optional: Estimate dynamics for first steps. T0

Proof: is strongly convex in expectationF̃t

Algorithm: Fast Rates

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

Theorem: For general noise, the OnlineNewtonStep algorithm
(Hazan ’07) attains fast rates.

Optional: Estimate dynamics for first steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Algorithm: Fast Rates

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − OnlineNewton(Mt)

Theorem: For general noise, the OnlineNewtonStep algorithm
(Hazan ’07) attains fast rates.

Optional: Estimate dynamics for first steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Algorithm: Fast Rates

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − OnlineNewton(Mt)

Theorem: For general noise, the OnlineNewtonStep algorithm
(Hazan ’07) attains fast rates.

Optional: Estimate dynamics for first steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Proof: is exp-concaveF̃t

Algorithm: Fast Rates

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − OnlineNewton(Mt)

Theorem: For general noise, the OnlineNewtonStep algorithm
(Hazan ’07) attains fast rates.

Optional: Estimate dynamics for first steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Proof: is exp-concaveF̃t

Intuition: Newton solves ill-conditioned quadratic functions

Algorithm: Fast Rates

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − OnlineNewton(Mt)

Theorem: For general noise, the OnlineNewtonStep algorithm
(Hazan ’07) attains fast rates.

Optional: Estimate dynamics for first steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Proof: is exp-concaveF̃t

Algorithm: Fast Rates

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − OnlineNewton(Mt)

Theorem: For general noise, the OnlineNewtonStep algorithm
(Hazan ’07) attains fast rates.

Optional: Estimate dynamics for first steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Proof: is exp-concaveF̃t

Fast rates for unknown dynamics relies on carefully sensitivity to error
argument + overparametrization.

Algorithm: Fast Rates

1. defined in terms of ut ← uMt
t M = (M[0], …, M[k])

For t = T0, T0 + 1,…

2. Mt ← Mt − OnlineNewton(Mt)

Takeaway: Only thing that changes is the optimizer + assumptions

Optional: Estimate dynamics for first steps. T0

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

*

Proof: is exp-concaveF̃t

Summary

Summary

1 Fast Rates refer to making grow as slow as possible.RegT

Summary

1 Fast Rates refer to making grow as slow as possible.RegT

2. With curvature, fast rates can be obtained only by modification of the
optimizer.

Summary

1 Fast Rates refer to making grow as slow as possible.RegT

3. With curvature, the regret is determined only by knowledge of dynamics, and
only logarithmically affected by changing costs + adversarial noise

2. With curvature, fast rates can be obtained only by modification of the
optimizer.

Hardness Results and Open
Questions

Roadmap

1.

2.

3. fi

4.

5. Open Problems / Hardness Results

The need for stabilization
• Throughout, we assumed a known, stabilizing controller.

Theorem (Chen & Hazan, ’20): Without a known stabilizing controller, regret
is , until one stabilizes systemΩ(exp(dimension))

Open Question: What are stronger assumptions under one can
stabilize the dynamics via online methods?

Beyond linear dynamics
• Throughout, we assumed a fixed, linear dynamics

Theorem (Gradu, Minyasan, Hazan, ’20): If dynamics change
independently of the learner, then can obtain low adaptive regret

At, Bt, Ct

Open Question: What if dynamics change in response to learner?

Beyond linear dynamics
• Throughout, we assumed a fixed, linear dynamics

Theorem (Minyasan, Gradu, Simchowitz, Hazan, ’21): If dynamics
change independently of the learner, then can obtain low adaptive regret

At, Bt, Ct

Open Question: How to learn for truly nonlinear dynamics?

Towards practical deployment
• Thus far, we have given mostly theoretical results

Theorems: Many of them, illustrating powerful principles in control + AI
(improperness, online learning, adaptation).

Open Question: Using online control for the last mile performance.

Summary

Core Concepts:

1. From optimal/robust control to regret

Core Concepts:

1. From optimal/robust control to regret

2. From “proper controller” to convex relaxation

Core Concepts:

1. From optimal/robust control to regret

2. From “proper controller” to convex relaxation

3. Combine statistical learning with online optimization

Core Concepts:

1. From optimal/robust control to regret

2. From “proper controller” to convex relaxation

3. Combine statistical learning with online optimization

Core Concepts:

Many open questions!

“Improperness”Learning

Non-stochastic control at the intersection
Adaption

Youla, SLS

Convex
Relaxations

Adaptive
Control

SysID

Certainty
Equivalence

ILC

“Improperness”Learning

Non-stochastic control at the intersection
Adaption

Youla, SLS

Convex
Relaxations

Adaptive
Control

SysID

Certainty
Equivalence

ILC

References

Agrawal, Bullins, Hazan, Kakade, Singh “Online Control with Adversarial Disturbances”, 2019

Agrawal, Hazan, Singh “Logarithmic Regret for Online Control”, 2019

Hazan, Kakade, Singh, “The Nonstochastic Control Policy”

Simchowitz, Singh, Hazan “Improper Learning for Nonstochastic Control”, 2020

Simchowitz “Making Nonstochastic Control as Easy as Stochastic”, 2020

Gradu, Minyasan, Hazan “Adaptive Regret for Control of Time-Varying Dynamics”, 2020

Chen, Hazan “Blackbox Control for Linear Dynamical Systems”, 2021

