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Pre-training in Large Language Models

(source: Wikipedia)

We treat natural human language as an expert demonstrator 
which we aim to imitate.  Here, the “observation” is the string of 
tokens thus far , and the “action” is the predicted next token.



Pre-training in Large Robot Models

We treat use a human expert 
demonstrator which we aim to 
imitate.  Our aim is to predict a “next 
action” (robot action) from 
observation (pixels, tactile sensing.)



Pre-training in Large Robot Models

• Will scaling solve robotic 
foundation models? 

• Do we need on-policy data or 
can this be done entirely offline? 

• How should we design policies 
that can scale?



Pre-training: Discrete v.s. Continuous?

Language: predict discrete tokens. Robotics: predict continuous actions.



Pre-training: Discrete v.s. Continuous?

Is there a fundamental difference?



Reinforcement Learning v.s. Continuous Control

Dynamics: st+1 ∼ P(st, at)

Notation: states , actions s a

Policy: at ∼ π(st)

Dynamics: xt+1 = f(xt, ut) + (noise)

Notation: states , actions x u

Policy: ut ∼ π(xt)

Semantics: , st = (w1, …, wt) at = wt+1 Semantics:  are continuous valued. x, u



Formalizing Imitation Learning

Mininimize  ℛc( ̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert 

“Horizon” H



Example Algorithm: Behavior Cloning.

Algorithm: ̂π ≈ arg min
π ∑

(x,u)∈expert data

loss(π, x, u)

Goal: Train  to fit the expert data. ̂π

Mininimize  ℛc( ̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert 



Example Algorithm: Behavior Cloning.

Algorithm: ̂π ≈ arg min
π ∑

(x,u)∈expert data

loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Example 2:      loss(π, x, u) = 1π(x)=u (  is discrete)π⋆

(  is deterministic)π⋆

Example 3:      loss(π, x, u) = log π(u ∣ x) (  is discrete, or  has density)π⋆ π⋆(x)

Example 4: loss(π, x, u) = (Score Matching) (popular in robotics)

Mininimize  ℛc( ̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert 



Example Algorithm: Behavior Cloning.

Algorithm: ̂π ≈ arg min
π ∑

(x,u)∈expert data

loss(π, x, u)

Compare to ℛexpert( ̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss( ̂π, xt, ut)]

trajectories loss of imitator under expert distribution

Mininimize  ℛc( ̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert 



The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π( ̂x1)

̂u2

π⋆ : 𝒳 → 𝒰

xt+1 = f(xt, ut)

ℛexpert( ̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss( ̂π, xt, ut)]



The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π( ̂x1) ̂x2

̂u2
̂x3

̂xT+1

π⋆ : 𝒳 → 𝒰

Learner Trajectory ̂π : 𝒳 → 𝒰 Challenge A: Error accumulates over time steps, 
larger with larger H.

Challenge B: After error has accumulated, we 
are now out of distribution.

xt+1 = f(xt, ut)

Mininimize  ℛc( ̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert 



What is known?

Compare to  ℛexpert( ̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss( ̂π, π⋆, ut)]

loss of imitator under expert distribution

Mininimize  ℛc( ̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert 



What is known?

“Folklore Theorem” (DAGGER): Suppose that  a function of   is the 
zero-one loss, and that  is bounded in [0,1]. Then, 

loss(π, x, u) = 1π(x)=u
c(x, u)

ℛ( ̂π; π⋆) ≤ H ⋅ ℛexpert( ̂π; π⋆)

Beautiful Improvements due to Foster et al. ’24 for the Log Loss.

“Compounding error is at most linear(ish) in horizon”



Limitations of Prior Work.



Warmup:  Can we imitate  in the zero-one loss?

Scalar Prediction Problem: , x ∼ Uniform([0,1]) u = π⋆(x)

ℛexpert,{0,1}( ̂π, π⋆) = 𝔼x∼[0,1][I{ ̂π(x) ≠ π⋆(x)}]

Is this possible to do with non-vanishing error?



Warmup:  Can we imitate  in the zero-one loss?

Theorem: There exists a class of  such that, given   examples Π = {π} n
(x, π⋆(x)), x ∼ [0,1]

A. Any learning algorithm suffers  with probability oneℛexpert,{0,1}( ̂π, π⋆) = 1

B. Behavior cloning with loss(x, u, π) = (π(x) − u)2

ℛexpert,L2
( ̂π, π⋆) = 𝔼x∼[0,1][ | ̂π(x) − π⋆(x) |2 ]1/2 = n−ω(1)

Proof Sketch: Consider . Getting 
small  error requires perfect estimation of  from finite data.  

π(x) = ∑k≥1 αk2−k cos(2πkx), αk ∈ {−1,1}
{0,1} {ak}



Warmup:  Can we imitate  in the zero-one loss?

Theorem: There exists a class of  such that, given   examples Π = {π} n
(x, π⋆(x)), x ∼ [0,1]

A. Any learning algorithm suffers  with probability oneℛexpert,{0,1}( ̂π, π⋆) = 1

B. Behavior cloning with loss(x, u, π) = (π(x) − u)2

ℛexpert,L2
( ̂π, π⋆) = 𝔼x∼[0,1][ | ̂π(x) − π⋆(x) |2 ]1/2 = n−ω(1)

Key Implication: The linear-in-horizon compounding error (DAGGER) is not 
applicable. 



Results.



What is a “nice” imitation learning problem?

Property 1: Dynamics and expert are deterministic  is deterministic.xt+1 = f(xt, ut), π⋆(xt)

Property 3: The dynamics are “exponentially incrementally input-to-state stable” (E-IISS) 

(okay … what does this mean?)

Property 2: The dynamics and the expert are , and their first and second derivatives are 
bounded (i.e. Lipschitz and smooth).

C∞

(unimodal) 



What is a “nice” imitation learning problem?

Property 1: Dynamics and expert are deterministic  is deterministic.xt+1 = f(xt, ut), π⋆(xt)

Our lower bounds hold for “simple” imitator policies:

Property 2: The dynamics and the expert are , and their first and second derivatives are 
bounded (i.e. Lipschitz and smooth).

C∞

(unimodal) 

Lipschitz/smooth independent of x

̂π(x) = mean( ̂π(x)) + z

see later for non-simple



An Informal Statement
Theorem:  Pick your favorite  . Then there exists a family of “nice” 
imitation learning problems of problem dimension  such that, given n example 
trajectories, there exists an algorithm for which

k ∈ ℕ
3

 =   ℛexpert,L1
( ̂π; π⋆) 𝔼π⋆[∑H

t=1 ∥π⋆
t (xt) − ̂π(xt)∥] ≤ n−k

Unlike  loss, this can be minimized.{0,1}



An Informal Statement
Theorem:  Pick your favorite  . Then there exists a family of “nice” 
imitation learning problems of problem dimension  such that, given n example 

trajectories, there exists an algorithm for which 

k ∈ ℕ
3

ℛexpert,L1
( ̂π; π⋆) ≤ n−k

ℛc( ̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k}

However, there exists a 1-Lipschitz, bounded  such that any learning 
algorithm returns “simple” policies  suffers

c( ⋅ , ⋅ ) ∈ [0,1]
̂π

excess cost under imitator relative to expert 



An Informal Statement

Theorem:  There exists a family of “nice” imitation learning problems of 
problem dimension  such that, given n example trajectories3

ℛc( ̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k} ℛexpert,L1
( ̂π; π⋆) ≤ n−k

Remark 1: Deployment error can be exponentially larger than expert-distribution error. 

Remark 2: We will see: result depends on imitator policy, not learning algorithm . 
Applies to behavior cloning, offline RL, inverse RL (all without on-policy data). 

Remark 3: We will see how to break our lower bound with “improper” policies.



What is a nice control system?



What is a “nice” imitation learning problem?

Property 1: Dynamics and expert are deterministic  is deterministic.xt+1 = f(xt, ut), π⋆(xt)

Property 3: The dynamics are “exponentially incrementally input-to-state stable” (E-IISS) 

(okay … what does this mean?)

Property 2: The dynamics and the expert are , and their first and second derivatives are 
bounded (i.e. Lipschitz and smooth).

C∞

(unimodal) 



Instability in control systems

Consider the scalar, linear control system f(x, u) = 2x + u

Consider two trajectories:  and , (x1, u1, …), ui ≡ 0 (x′ 1, u′ 1, …), ui ≡ δ x1 = x′ 1 = 0

x

h

xh ≡ 0

x′ h = 2x′ j−1 + δ ≥ δ2h−1

We call systems with such 
high sensitivity to their 
inputs  “unstable” 



Instability in control systems

Theorem (Informal): There exist imitation learning problems which satisfy Property 1 
(Determinism) and Property 2 (Smoothness) but are unstable (violate property 3) for 
which all learning algorithms (no restriction) suffer, for ,H ≤ edimension

x

h

xh ≡ 0

x′ h = 2x′ j−1 + δ ≥ δ2h−1

We call such a system 
“unstable” 

ℛ( ̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k} ℛexpert,L1
( ̂π; π⋆) ≤ n−k



Instability in control systems

Unstable systems are real in aeronautics! Not so much in robotic manipulation…

x

h

xh ≡ 0

x′ h = 2x′ j−1 + δ ≥ δ2h−1

We call such a system 
“unstable” 

So what about “nice” systems?



Exponential Stability (E-IISS)
Definition (Angelis ’08, Pfrommer ’23): We say that a control system  is Exponentially 
Incremental Input-to-State Stable (E-IISS) if for any initial states  and any 
sequences  and  of control inputs, the resulting trajectories satisfy

f
x1, x′ 1

u1, …, uH u′ 1, …, u′ H

     ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥ C > 0, ρ ∈ (0,1)

exponential forgetting of past states & inputs

Example: , and . Then,   x1 = x′ 1 = 0 uh ≡ 0, u′ h ≡ δ ∥xh+1−x′ h+1∥ ≤ C
1 − ρ ⋅ δ = O(δ)

perturbations of inputs lead to bounded perturbations of states!



Open Loop Stable

Property 3: The dynamics    are E-IISS (x, u) ↦ f(x, u)

     ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

perturbations of inputs lead to bounded perturbations of states!

xt+1 = f(xt, ut)
xtut

  δut = u′ t − ut

+ u′ t x′ t

close



Closed Loop Stable

Property 3: The dynamics    and  are E-IISS (x, u) ↦ f(x, u) (x, δu) ↦ f(x, π⋆(x) + δu)

     ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

perturbations of inputs lead to bounded perturbations of states!

xt+1 = f(xt, ut)
xtut = π⋆(xt)

close

x′ t

ũ′ t = π⋆(x′ t)

u′ t = π⋆(x′ t) + δut

+



What is a “nice” imitation learning problem?

Property 1: Dynamics and expert are deterministic  is deterministic.xt+1 = f(xt, ut), π⋆(xt)

Property 2: The dynamics and the expert are , and their first and second derivatives are 
bounded (i.e. Lipschitz and smooth).

C∞

Property 3: The dynamics   and   are E-IISS (x, u) ↦ f(x, u) (x, δu) ↦ f(x, π⋆(x) + δu)

     ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

“open and closed-loop” stability

perturbations of inputs lead to bounded perturbations of states!



The Theorem Statement

Property 3: The dynamics   and   are E-IISS (x, u) ↦ f(x, u) (x, δu) ↦ f(x, π⋆(x) + δu)

     ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

perturbations of inputs lead to bounded perturbations of states!

ℛ( ̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k} ℛexpert,L2
( ̂π; π⋆) ≤ n−k



Wait…wait… how can this be?

Property 3: The dynamics   and   are E-IISS (x, u) ↦ f(x, u) (x, δu) ↦ f(x, π⋆(x) + δu)

     ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

perturbations of inputs lead to bounded perturbations of states!

ℛ( ̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k} ℛexpert,L2
( ̂π; π⋆) ≤ n−k

This says that the imitator  is learning up to 
“small perturbations”

Yet still, the error under deployment grows!



 Proof via Linear Control.



Roadmap

1. Introduce linear control systems

2. Explain incremental instability for linear control systems

3. Explain the tension between imitation and stability in linear systems

4. Gesture to the general result.



Linear Dynamical Systems

Definition: A linear dynamical system is a dynamical map where  is linear. f(x, u)

xt+1 = Axt + But

Lemma: Let  be the identity. Then, a linear system is E-ISSS if and only if  B = I

 is strictly less than one.ρ(A) := max{ |Re(λ) | : λ ∈ spec(A)}

Proof Sketch: If you unroll the dynamics, you get powers of . These decay 
exponentially if , but grow exponentially if 

Ak

ρ(A) < 1 ρ(A) > 1
x

t
xt ≡ 0

(exponentially large perturbation sensitivity)



Linear Feedback Controllers

Definition: A linear state feedback policy is linear memoryless policy  . π(x) = Kx

Lemma: Consider closed-loop system  with linear dynamics 
and linear feedback policy. Then

f π(x, u) = f(x, π(x) + u)

xt+1 = Axt + But

1. f π(x, δu) := f(x, π(x) + δu) = (A + BK)x + Bδu

2. If  is the identity, then  is E-ISSS if and only if B = I f π ρ(A + K) < 1

3. If  is the identity and , exponential perturbation sensitivity.B = I ρ(A + K) > 1



Linear Feedback Controllers

Corollary: Let   have  and , but .  A, K⋆, K̂ ρ(A) < 1 ρ(A + K⋆) < 1 ρ(A + K̂) > 1

xt+1 = Axt + But

3. Closed-loop dynamics   for  can 
have exponentially large perturbation sensitivity. 

f ̂π(x, u) = f(x, ̂π(x) + u) ̂π(x) = K̂x

2. Closed-loop dynamics   for  is E-ISSSf π⋆(x, u) = f(x, π⋆(x) + u) π⋆(x) = K⋆x

1. Open loop dynamics  is E-ISSSf(x, u) = Ax + u

Intuition: For the construction above,  are “nice,” but  is likely to have exponentially 
large compounding error.  

f, f π⋆ ̂π



Comparison of Stability

Corollary: Let   have  and , but .  A, K⋆, K̂ ρ(A) < 1 ρ(A + K⋆) < 1 ρ(A + K̂) > 1

xt+1 = Axt + But

xt+1 = f(xt, ut)
xtut

x′ tu′ t

 is E-ISSSf

xt

x′ t

xt+1 = f(xt, ut)
ut = π⋆(xt)

u′ t = π⋆(x′ t) + δu′ t

 is E-ISSSf π⋆

xt

x′ t

xt+1 = f(xt, ut)
ut = ̂π(xt)

u′ t = ̂π(x′ t) + δu′ t

 NOT E-ISSSf ̂π



xt+1 = Axt + But

Key Lemma:  There exists a pair of 2x2 matrix  and  with the 
following properties:

(A1, K⋆
1 ) (A2, K⋆

2 )

The Challenging Pair

1.  and  are both strictly less than one (E-ISS). ρ(Ai) ρ(Ai + K⋆
i )

Intuition:  describe the unknown dynamics and expert,  is a linear imitator(Ai, K⋆
i ) K̂

Takeaway: Both systems + experts are closed loop stable, but not the imitation policy!

2. For any matrix  which can be “learned from imitation data,” K̂ max
i

ρ(Ai + K̂) > 1



xt+1 = Axt + But

Lemma:  There exists a pair of 2x2 matrix  and  with the following 
properties:

(A1, K⋆
1 ) (A2, K⋆

2 )

1.  and  are both strictly less than one (E-ISS). ρ(Ai) ρ(Ai + K⋆
i )

2. The span of the vector  is an invariant subspace of e2 = (0,1) Ai + K⋆
i

e2

e1

2. all data here if x1 = αe2

state-space

The Challenging Pair



xt+1 = Axt + But

Lemma:  There exists a pair of 2x2 matrix  and  with the following 
properties:

(A1, K⋆
1 ) (A2, K⋆

2 )

1.  and  are both strictly less than one (E-ISS). ρ(Ai) ρ(Ai + K⋆
i )

2. The span of the vector  is an invariant subspace of e2 = (0,1) Ai + K⋆
i

e2

e1

2. all data here if x1 = αe2

state-space

The Challenging Pair

3.    and    A1 e2 = A2 e2 K⋆
1 e2 = K⋆

2 e2

3. cannot identify index i



xt+1 = Axt + But

Lemma:  There exists a pair of 2x2 matrix  and  with the following 
properties:

(A1, K⋆
1 ) (A2, K⋆

2 )

1.  and  are both strictly less than one (E-ISS). ρ(Ai) ρ(Ai + K⋆
i )

e2

e1
state-space

If  agrees with data on K̂ e2

The Challenging Pair

2/3. Data from  cannot distinguish systems. e2 = (0,1)

4. If    , then  destabilizes one system:      K̂ e2 = K⋆
i e2 K̂ maxi ρ(Ai + K̂) > 1

 is destabilizingK̂



xt+1 = Axt + But

Corollary:  Exists a pair of 2x2 matrix  and  such any linear policy 
 either (a) disagrees with training data or (b) has exponentially sensitivity 

to -perturbations for one of .

(A1, K⋆
1 ) (A2, K⋆

2 )
̂π(x) = K̂x
e1 A1, A2

e2

e1
state-space

If  agrees with data on K̂ e2

The Challenging Pair

 is destabilizingK̂

Unfortunately, linear systems are too “all-or-nothing” for a lower bound.



Nonlinear Construction

Key Idea: Embed the linear problem into a “nonlinear” problem that forces the learner in the 
 direction, but only provides expert data in the  direction.e1 e2

e2

e1

state-spacex0

xt+1 = Aixt + ut

 destabilizingK̂

 π⋆(x) = g⋆(x)
f(x) = g⋆(x) − u

x1 = g⋆(x) − ̂g(x)

 can be learned up to a non-parametric rateg⋆(x)

bump function



Nonlinear Construction
e2

e1

state-spacex1x0

xt+1 = Aixt + ut

 destabilizingK̂

Key Technical Tool: Because simple policies have smooth means, we can analyze 
them as “local linear controllers” by Taylor approximation.



Nonlinear Construction
e2

e1

state-spacex1x0

xt+1 = Aixt + ut

 destabilizingK̂

Core Insight: For smooth ‘simple’ policies, tension between fidelity to expert 
data (imitation) and stabilization of unseen dynamical modes.  



Connecting Stability + 
Dynamic Programming



The Q function in Deterministic Control

Definition: for dynamics , policy , and cost , the  function isf π c Q

Qf,π,c
t (x, u) := ∑H

t′ =t c(xt′ 
, ut′ 

)  s.t. dynamics obey ( f, π), xt′ 
= x, ut′ 

= u

“cost-to-go”



The Q function in Deterministic Control

Definition: for dynamics , policy , and cost , the  function isf π c Q Qf,π,c
t (x, u) .

Theorem (Performance Difference): 

 ℛc( ̂π; π⋆) := 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]

    = 𝔼π⋆[∑H
h=1 Qf, ̂π,c

t (xt, ̂π(xt)) −Qf, ̂π,c
t (xt, π⋆(xt))

expectation under expert distribution Q function of the learner



The Q function in Deterministic Control

Definition: for dynamics , policy , and cost , the  function isf π c Q Qf,π,c
t (x, u) .

Theorem (Performance Difference): 

 ℛc( ̂π; π⋆) := 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]

    = 𝔼π⋆[∑H
h=1 Qf, ̂π,c

t (xt, ̂π(xt)) −Qf, ̂π,c
t (xt, π⋆(xt))

policy of expertpolicy of the learner



The Q function in Deterministic Control

Theorem (Performance Difference): 

     ℛc( ̂π; π⋆)= 𝔼π⋆[∑H
h=1 Qf, ̂π,c

t (xt, ̂π(xt)) −Qf, ̂π,c
t (xt, π⋆(xt))

Corollary: If  is Lipschitz in :    , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′ )| ≤ L∥u − u′ ∥

  ℛc( ̂π; π⋆) ≤ L ⋅ 𝔼π⋆[∑H
h=1 ∥π⋆(xt)− ̂π(xt)∥]



The Q function in Deterministic Control

Corollary: If  is Lipschitz in :    , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′ )| ≤ L∥u − u′ ∥

Lipschitz  ensures linear-in-L compounding error! Qf, ̂π,c

  ℛc( ̂π; π⋆) ≤ LH ⋅ 𝔼π⋆[∑H
h=1 ∥π⋆(xt)− ̂π(xt)∥  = L ⋅ ℛexpert,L1

( ̂π; π⋆)

(see also Swamy et al. ’21)



The Q function in Deterministic Control

Corollary: If  is Lipschitz in :    , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′ )| ≤ L∥u − u′ ∥

1. Low compounding error is guaranteed by insensitive   

2. Large compounding error requires highly sensitive   

3. Our Result (Re-Interpretation): Even if  are open/closed-loop stable, it is 
hard to both imitate  and ensure   is insensitive to perturbation

Qf, ̂π,c

Qf, ̂π,c

( f, π⋆)
π⋆ Qf, ̂π,c

 ℛc( ̂π; π⋆) ≤ LH ⋅ ℛexpert,L1
( ̂π; π⋆)



The Q function in Deterministic Control

Corollary: If  is Lipschitz in :    , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′ )| ≤ L∥u − u′ ∥

 ℛc( ̂π; π⋆) ≤ LH ⋅ ℛexpert,L1
( ̂π; π⋆)

Takeaway for RL:  Assumptions on the class of  functions might not be fundamental! 
Instead, we need to operate from first principles from the dynamics and (as we will see…) 
policy classes!

Q



The Q function in Deterministic Control

Corollary: If  is Lipschitz in :    , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′ )| ≤ L∥u − u′ ∥

Theorem (Pfrommer, S,J ’25): If  is a sufficiently expressive set of cost 
functions, then uniform Lipschitzness of    over  is equivalent to 
incremental stability of 

𝒞 = {c}
Qf, ̂π,c c ∈ 𝒞

( f, ̂π)

 ℛc( ̂π; π⋆) ≤ LH ⋅ ℛexpert,L1
( ̂π; π⋆)



Weirdness of Continuous 
Action Spaces

(and the power of non-simple policies)



We need new notions of ‘coverage’

Theorem (Super Informal):  If the expert trajectories are sufficiently “anti-
concentrated” in the sense that they have lower bounded “local variance”, 
then we can imitate without compounding error. 

Note: The expert always have “perfect coverage” of itself!

Takeaway: We need “metric,” not just “probabilistic” notions of coverage in 
continuous action spaces!

Algorithmic takeaway: We prove in forthcoming work that adding some exploration 
during data collection avoids compounding error, even if open-loop unstable. 



Improper policies can be more powerful!

Theorem (Super Informal, forthcoming):  Under 
certain conditions, open-loop “chunks” of actions 
can result in bounded compounding error!

Longer chunks = reduced compounding error!
See also Block et al ’24.



Food for thought: Stylizing Instability

e2

e1
state-space

 is destabilizing of one of two systemsK̂

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1
unstable



Stylizing Instability

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1
unstable

Observation: There is no linear feedback policy  which 
stabilizes for both choices of .

π(x) = kx
ξ

Proof: Under , we have π(x) = kx xt+1 = (k+ξρ)xt

: magnitude ∃ξ > 1



Stylizing Instability

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1
unstable

Observation: There is no linear feedback policy  which 
stabilizes for both choices of .

π(x) = kx
k

Corollary: There exists no smooth, deterministic policy which locally stabilizes.

Proof: Taylor Expansion and argue about linear approximation.



Stylizing Instability

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1
unstable

Observation: There is no linear feedback policy  which 
stabilizes for both choices of .

π(x) = kx
k

Corollary: There exists no simple policy  which locally stabilizes.̂π(x) = mean( ̂π(x)) + z

Proof: Taylor Expansion and argue about linear approximation + noise.

Lipschitz/smooth independent of x



Beyond Simple Policies

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a very “simple”, but time-varying linear policy 
which stabilizes the dynamics to  in two times steps!

Proof: π(x, t) = {ρx t even
−ρx t odd



Concentric Stabilization

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a deterministic, non-time varying but non-smooth 
policy which stabilizes around 0.

Proof: π(x) = {ρx k even
−ρx k odd

|x | ∈ ((2ρ2)−k, (2ρ2)−(k−1)]

0

… …
k even k even k oddk odd

non-smooth



Benevolent Gambler’s Ruin

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a stochastic, bi-modal policy (i.e. not-simple) which 
stabilizes to the origin with high-probability. 

π(x) = {ρx w.p. 1/2
−ρx w.p 1/2

ℙ[xt+1 ≠ 0] = 2−t

t

x



Benevolent Gambler’s Ruin

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a stochastic, bi-modal policy (i.e. not-simple) which 
stabilizes to the origin with high-probability. 

π(x) = {ρx w.p. 1/2
−ρx w.p 1/2 randomization over uncertainty in dynamics 

game: learner vs. “nature”



Benevolent Gambler’s Ruin

Scalar Dynamics ,   unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a stochastic, bi-modal policy (i.e. not-simple) which 
stabilizes to the origin with high-probability. 

randomization over uncertainty in dynamics 

game: learner vs. “nature”

Diffusion Policy, Chi et. al ‘23



Surprising Takeaway: Stochastic, multi-modal policies can yield benefits, 
even for imitating deterministic policies. 

What are the fundamental benefits of generative 
models for solving optimal control tasks?



Surprising Takeaway: Stochastic, multi-modal policies can yield benefits, 
even for imitating deterministic policies. 

Takeaway 2:  Re-think our assumptions on the class of  functions!Q

Takeaway 3:  Re-thinking coverage for continuous action spaces!

Takeaway 4:  Re-think policy parametrization for scaling robot learning!

… for you RL theorists: 


