
The Pitfalls of Imitation Learning
(when the action space is continuous)

Max Simchowitz, Daniel Pfrommer, Ali Jadbabaie

Pre-training in Large Language Models

(source: Wikipedia)

We treat natural human language as an expert demonstrator
which we aim to imitate. Here, the “observation” is the string of
tokens thus far , and the “action” is the predicted next token.

Pre-training in Large Robot Models

We treat use a human expert
demonstrator which we aim to
imitate. Our aim is to predict a “next
action” (robot action) from
observation (pixels, tactile sensing.)

Pre-training in Large Robot Models

• Will scaling solve robotic
foundation models?

• Do we need on-policy data or
can this be done entirely offline?

• How should we design policies
that can scale?

Pre-training: Discrete v.s. Continuous?

Language: predict discrete tokens. Robotics: predict continuous actions.

Pre-training: Discrete v.s. Continuous?

Is there a fundamental difference?

Reinforcement Learning v.s. Continuous Control

Dynamics: st+1 ∼ P(st, at)

Notation: states , actions s a

Policy: at ∼ π(st)

Dynamics: xt+1 = f(xt, ut) + (noise)

Notation: states , actions x u

Policy: ut ∼ π(xt)

Semantics: , st = (w1, …, wt) at = wt+1 Semantics: are continuous valued. x, u

Formalizing Imitation Learning

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert

“Horizon” H

Example Algorithm: Behavior Cloning.

Algorithm: ̂π ≈ arg min
π ∑

(x,u)∈expert data

loss(π, x, u)

Goal: Train to fit the expert data. ̂π

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert

Example Algorithm: Behavior Cloning.

Algorithm: ̂π ≈ arg min
π ∑

(x,u)∈expert data

loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Example 2: loss(π, x, u) = 1π(x)=u (is discrete)π⋆

(is deterministic)π⋆

Example 3: loss(π, x, u) = log π(u ∣ x) (is discrete, or has density)π⋆ π⋆(x)

Example 4: loss(π, x, u) = (Score Matching) (popular in robotics)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert

Example Algorithm: Behavior Cloning.

Algorithm: ̂π ≈ arg min
π ∑

(x,u)∈expert data

loss(π, x, u)

Compare to ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, xt, ut)]

trajectories loss of imitator under expert distribution

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1)

̂u2

π⋆ : 𝒳 → 𝒰

xt+1 = f(xt, ut)

ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, xt, ut)]

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1) ̂x2

̂u2
̂x3

̂xT+1

π⋆ : 𝒳 → 𝒰

Learner Trajectory ̂π : 𝒳 → 𝒰 Challenge A: Error accumulates over time steps,
larger with larger H.

Challenge B: After error has accumulated, we
are now out of distribution.

xt+1 = f(xt, ut)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert

What is known?

Compare to ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

loss of imitator under expert distribution

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
error cost under imitator cost under expert

What is known?

“Folklore Theorem” (DAGGER): Suppose that a function of is the
zero-one loss, and that is bounded in [0,1]. Then,

loss(π, x, u) = 1π(x)=u
c(x, u)

ℛ(̂π; π⋆) ≤ H ⋅ ℛexpert(̂π; π⋆)

Beautiful Improvements due to Foster et al. ’24 for the Log Loss.

“Compounding error is at most linear(ish) in horizon”

Limitations of Prior Work.

Warmup: Can we imitate in the zero-one loss?

Scalar Prediction Problem: , x ∼ Uniform([0,1]) u = π⋆(x)

ℛexpert,{0,1}(̂π, π⋆) = 𝔼x∼[0,1][I{ ̂π(x) ≠ π⋆(x)}]

Is this possible to do with non-vanishing error?

Warmup: Can we imitate in the zero-one loss?

Theorem: There exists a class of such that, given examples Π = {π} n
(x, π⋆(x)), x ∼ [0,1]

A. Any learning algorithm suffers with probability oneℛexpert,{0,1}(̂π, π⋆) = 1

B. Behavior cloning with loss(x, u, π) = (π(x) − u)2

ℛexpert,L2
(̂π, π⋆) = 𝔼x∼[0,1][| ̂π(x) − π⋆(x) |2]1/2 = n−ω(1)

Proof Sketch: Consider . Getting
small error requires perfect estimation of from finite data.

π(x) = ∑k≥1 αk2−k cos(2πkx), αk ∈ {−1,1}
{0,1} {ak}

Warmup: Can we imitate in the zero-one loss?

Theorem: There exists a class of such that, given examples Π = {π} n
(x, π⋆(x)), x ∼ [0,1]

A. Any learning algorithm suffers with probability oneℛexpert,{0,1}(̂π, π⋆) = 1

B. Behavior cloning with loss(x, u, π) = (π(x) − u)2

ℛexpert,L2
(̂π, π⋆) = 𝔼x∼[0,1][| ̂π(x) − π⋆(x) |2]1/2 = n−ω(1)

Key Implication: The linear-in-horizon compounding error (DAGGER) is not
applicable.

Results.

What is a “nice” imitation learning problem?

Property 1: Dynamics and expert are deterministic is deterministic.xt+1 = f(xt, ut), π⋆(xt)

Property 3: The dynamics are “exponentially incrementally input-to-state stable” (E-IISS)

(okay … what does this mean?)

Property 2: The dynamics and the expert are , and their first and second derivatives are
bounded (i.e. Lipschitz and smooth).

C∞

(unimodal)

What is a “nice” imitation learning problem?

Property 1: Dynamics and expert are deterministic is deterministic.xt+1 = f(xt, ut), π⋆(xt)

Our lower bounds hold for “simple” imitator policies:

Property 2: The dynamics and the expert are , and their first and second derivatives are
bounded (i.e. Lipschitz and smooth).

C∞

(unimodal)

Lipschitz/smooth independent of x

̂π(x) = mean(̂π(x)) + z

see later for non-simple

An Informal Statement
Theorem: Pick your favorite . Then there exists a family of “nice”
imitation learning problems of problem dimension such that, given n example
trajectories, there exists an algorithm for which

k ∈ ℕ
3

 = ℛexpert,L1
(̂π; π⋆) 𝔼π⋆[∑H

t=1 ∥π⋆
t (xt) − ̂π(xt)∥] ≤ n−k

Unlike loss, this can be minimized.{0,1}

An Informal Statement
Theorem: Pick your favorite . Then there exists a family of “nice”
imitation learning problems of problem dimension such that, given n example

trajectories, there exists an algorithm for which

k ∈ ℕ
3

ℛexpert,L1
(̂π; π⋆) ≤ n−k

ℛc(̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k}

However, there exists a 1-Lipschitz, bounded such that any learning
algorithm returns “simple” policies suffers

c(⋅ , ⋅) ∈ [0,1]
̂π

excess cost under imitator relative to expert

An Informal Statement

Theorem: There exists a family of “nice” imitation learning problems of
problem dimension such that, given n example trajectories3

ℛc(̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k} ℛexpert,L1
(̂π; π⋆) ≤ n−k

Remark 1: Deployment error can be exponentially larger than expert-distribution error.

Remark 2: We will see: result depends on imitator policy, not learning algorithm .
Applies to behavior cloning, offline RL, inverse RL (all without on-policy data).

Remark 3: We will see how to break our lower bound with “improper” policies.

What is a nice control system?

What is a “nice” imitation learning problem?

Property 1: Dynamics and expert are deterministic is deterministic.xt+1 = f(xt, ut), π⋆(xt)

Property 3: The dynamics are “exponentially incrementally input-to-state stable” (E-IISS)

(okay … what does this mean?)

Property 2: The dynamics and the expert are , and their first and second derivatives are
bounded (i.e. Lipschitz and smooth).

C∞

(unimodal)

Instability in control systems

Consider the scalar, linear control system f(x, u) = 2x + u

Consider two trajectories: and , (x1, u1, …), ui ≡ 0 (x′ 1, u′ 1, …), ui ≡ δ x1 = x′ 1 = 0

x

h

xh ≡ 0

x′ h = 2x′ j−1 + δ ≥ δ2h−1

We call systems with such
high sensitivity to their
inputs “unstable”

Instability in control systems

Theorem (Informal): There exist imitation learning problems which satisfy Property 1
(Determinism) and Property 2 (Smoothness) but are unstable (violate property 3) for
which all learning algorithms (no restriction) suffer, for ,H ≤ edimension

x

h

xh ≡ 0

x′ h = 2x′ j−1 + δ ≥ δ2h−1

We call such a system
“unstable”

ℛ(̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k} ℛexpert,L1
(̂π; π⋆) ≤ n−k

Instability in control systems

Unstable systems are real in aeronautics! Not so much in robotic manipulation…

x

h

xh ≡ 0

x′ h = 2x′ j−1 + δ ≥ δ2h−1

We call such a system
“unstable”

So what about “nice” systems?

Exponential Stability (E-IISS)
Definition (Angelis ’08, Pfrommer ’23): We say that a control system is Exponentially
Incremental Input-to-State Stable (E-IISS) if for any initial states and any
sequences and of control inputs, the resulting trajectories satisfy

f
x1, x′ 1

u1, …, uH u′ 1, …, u′ H

 ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥ C > 0, ρ ∈ (0,1)

exponential forgetting of past states & inputs

Example: , and . Then, x1 = x′ 1 = 0 uh ≡ 0, u′ h ≡ δ ∥xh+1−x′ h+1∥ ≤ C
1 − ρ ⋅ δ = O(δ)

perturbations of inputs lead to bounded perturbations of states!

Open Loop Stable

Property 3: The dynamics are E-IISS (x, u) ↦ f(x, u)

 ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

perturbations of inputs lead to bounded perturbations of states!

xt+1 = f(xt, ut)
xtut

 δut = u′ t − ut

+ u′ t x′ t

close

Closed Loop Stable

Property 3: The dynamics and are E-IISS (x, u) ↦ f(x, u) (x, δu) ↦ f(x, π⋆(x) + δu)

 ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

perturbations of inputs lead to bounded perturbations of states!

xt+1 = f(xt, ut)
xtut = π⋆(xt)

close

x′ t

ũ′ t = π⋆(x′ t)

u′ t = π⋆(x′ t) + δut

+

What is a “nice” imitation learning problem?

Property 1: Dynamics and expert are deterministic is deterministic.xt+1 = f(xt, ut), π⋆(xt)

Property 2: The dynamics and the expert are , and their first and second derivatives are
bounded (i.e. Lipschitz and smooth).

C∞

Property 3: The dynamics and are E-IISS (x, u) ↦ f(x, u) (x, δu) ↦ f(x, π⋆(x) + δu)

 ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

“open and closed-loop” stability

perturbations of inputs lead to bounded perturbations of states!

The Theorem Statement

Property 3: The dynamics and are E-IISS (x, u) ↦ f(x, u) (x, δu) ↦ f(x, π⋆(x) + δu)

 ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

perturbations of inputs lead to bounded perturbations of states!

ℛ(̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k} ℛexpert,L2
(̂π; π⋆) ≤ n−k

Wait…wait… how can this be?

Property 3: The dynamics and are E-IISS (x, u) ↦ f(x, u) (x, δu) ↦ f(x, π⋆(x) + δu)

 ∥xh+1−x′ h+1∥ ≤ Cρh ∥x1−x′ 1∥ +C∑h
j=1 ρh−j ∥uj−u′ j∥

perturbations of inputs lead to bounded perturbations of states!

ℛ(̂π; π⋆) ≥ const ⋅ min {1, 2H ⋅ n−k} ℛexpert,L2
(̂π; π⋆) ≤ n−k

This says that the imitator is learning up to
“small perturbations”

Yet still, the error under deployment grows!

 Proof via Linear Control.

Roadmap

1. Introduce linear control systems

2. Explain incremental instability for linear control systems

3. Explain the tension between imitation and stability in linear systems

4. Gesture to the general result.

Linear Dynamical Systems

Definition: A linear dynamical system is a dynamical map where is linear. f(x, u)

xt+1 = Axt + But

Lemma: Let be the identity. Then, a linear system is E-ISSS if and only if B = I

 is strictly less than one.ρ(A) := max{ |Re(λ) | : λ ∈ spec(A)}

Proof Sketch: If you unroll the dynamics, you get powers of . These decay
exponentially if , but grow exponentially if

Ak

ρ(A) < 1 ρ(A) > 1
x

t
xt ≡ 0

(exponentially large perturbation sensitivity)

Linear Feedback Controllers

Definition: A linear state feedback policy is linear memoryless policy . π(x) = Kx

Lemma: Consider closed-loop system with linear dynamics
and linear feedback policy. Then

f π(x, u) = f(x, π(x) + u)

xt+1 = Axt + But

1. f π(x, δu) := f(x, π(x) + δu) = (A + BK)x + Bδu

2. If is the identity, then is E-ISSS if and only if B = I f π ρ(A + K) < 1

3. If is the identity and , exponential perturbation sensitivity.B = I ρ(A + K) > 1

Linear Feedback Controllers

Corollary: Let have and , but . A, K⋆, K̂ ρ(A) < 1 ρ(A + K⋆) < 1 ρ(A + K̂) > 1

xt+1 = Axt + But

3. Closed-loop dynamics for can
have exponentially large perturbation sensitivity.

f ̂π(x, u) = f(x, ̂π(x) + u) ̂π(x) = K̂x

2. Closed-loop dynamics for is E-ISSSf π⋆(x, u) = f(x, π⋆(x) + u) π⋆(x) = K⋆x

1. Open loop dynamics is E-ISSSf(x, u) = Ax + u

Intuition: For the construction above, are “nice,” but is likely to have exponentially
large compounding error.

f, f π⋆ ̂π

Comparison of Stability

Corollary: Let have and , but . A, K⋆, K̂ ρ(A) < 1 ρ(A + K⋆) < 1 ρ(A + K̂) > 1

xt+1 = Axt + But

xt+1 = f(xt, ut)
xtut

x′ tu′ t

 is E-ISSSf

xt

x′ t

xt+1 = f(xt, ut)
ut = π⋆(xt)

u′ t = π⋆(x′ t) + δu′ t

 is E-ISSSf π⋆

xt

x′ t

xt+1 = f(xt, ut)
ut = ̂π(xt)

u′ t = ̂π(x′ t) + δu′ t

 NOT E-ISSSf ̂π

xt+1 = Axt + But

Key Lemma: There exists a pair of 2x2 matrix and with the
following properties:

(A1, K⋆
1) (A2, K⋆

2)

The Challenging Pair

1. and are both strictly less than one (E-ISS). ρ(Ai) ρ(Ai + K⋆
i)

Intuition: describe the unknown dynamics and expert, is a linear imitator(Ai, K⋆
i) K̂

Takeaway: Both systems + experts are closed loop stable, but not the imitation policy!

2. For any matrix which can be “learned from imitation data,” K̂ max
i

ρ(Ai + K̂) > 1

xt+1 = Axt + But

Lemma: There exists a pair of 2x2 matrix and with the following
properties:

(A1, K⋆
1) (A2, K⋆

2)

1. and are both strictly less than one (E-ISS). ρ(Ai) ρ(Ai + K⋆
i)

2. The span of the vector is an invariant subspace of e2 = (0,1) Ai + K⋆
i

e2

e1

2. all data here if x1 = αe2

state-space

The Challenging Pair

xt+1 = Axt + But

Lemma: There exists a pair of 2x2 matrix and with the following
properties:

(A1, K⋆
1) (A2, K⋆

2)

1. and are both strictly less than one (E-ISS). ρ(Ai) ρ(Ai + K⋆
i)

2. The span of the vector is an invariant subspace of e2 = (0,1) Ai + K⋆
i

e2

e1

2. all data here if x1 = αe2

state-space

The Challenging Pair

3. and A1 e2 = A2 e2 K⋆
1 e2 = K⋆

2 e2

3. cannot identify index i

xt+1 = Axt + But

Lemma: There exists a pair of 2x2 matrix and with the following
properties:

(A1, K⋆
1) (A2, K⋆

2)

1. and are both strictly less than one (E-ISS). ρ(Ai) ρ(Ai + K⋆
i)

e2

e1
state-space

If agrees with data on K̂ e2

The Challenging Pair

2/3. Data from cannot distinguish systems. e2 = (0,1)

4. If , then destabilizes one system: K̂ e2 = K⋆
i e2 K̂ maxi ρ(Ai + K̂) > 1

 is destabilizingK̂

xt+1 = Axt + But

Corollary: Exists a pair of 2x2 matrix and such any linear policy
 either (a) disagrees with training data or (b) has exponentially sensitivity

to -perturbations for one of .

(A1, K⋆
1) (A2, K⋆

2)
̂π(x) = K̂x
e1 A1, A2

e2

e1
state-space

If agrees with data on K̂ e2

The Challenging Pair

 is destabilizingK̂

Unfortunately, linear systems are too “all-or-nothing” for a lower bound.

Nonlinear Construction

Key Idea: Embed the linear problem into a “nonlinear” problem that forces the learner in the
 direction, but only provides expert data in the direction.e1 e2

e2

e1

state-spacex0

xt+1 = Aixt + ut

 destabilizingK̂

 π⋆(x) = g⋆(x)
f(x) = g⋆(x) − u

x1 = g⋆(x) − ̂g(x)

 can be learned up to a non-parametric rateg⋆(x)

bump function

Nonlinear Construction
e2

e1

state-spacex1x0

xt+1 = Aixt + ut

 destabilizingK̂

Key Technical Tool: Because simple policies have smooth means, we can analyze
them as “local linear controllers” by Taylor approximation.

Nonlinear Construction
e2

e1

state-spacex1x0

xt+1 = Aixt + ut

 destabilizingK̂

Core Insight: For smooth ‘simple’ policies, tension between fidelity to expert
data (imitation) and stabilization of unseen dynamical modes.

Connecting Stability +
Dynamic Programming

The Q function in Deterministic Control

Definition: for dynamics , policy , and cost , the function isf π c Q

Qf,π,c
t (x, u) := ∑H

t′ =t c(xt′
, ut′

) s.t. dynamics obey (f, π), xt′
= x, ut′

= u

“cost-to-go”

The Q function in Deterministic Control

Definition: for dynamics , policy , and cost , the function isf π c Q Qf,π,c
t (x, u) .

Theorem (Performance Difference):

 ℛc(̂π; π⋆) := 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]

 = 𝔼π⋆[∑H
h=1 Qf, ̂π,c

t (xt, ̂π(xt)) −Qf, ̂π,c
t (xt, π⋆(xt))

expectation under expert distribution Q function of the learner

The Q function in Deterministic Control

Definition: for dynamics , policy , and cost , the function isf π c Q Qf,π,c
t (x, u) .

Theorem (Performance Difference):

 ℛc(̂π; π⋆) := 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]

 = 𝔼π⋆[∑H
h=1 Qf, ̂π,c

t (xt, ̂π(xt)) −Qf, ̂π,c
t (xt, π⋆(xt))

policy of expertpolicy of the learner

The Q function in Deterministic Control

Theorem (Performance Difference):

 ℛc(̂π; π⋆)= 𝔼π⋆[∑H
h=1 Qf, ̂π,c

t (xt, ̂π(xt)) −Qf, ̂π,c
t (xt, π⋆(xt))

Corollary: If is Lipschitz in : , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′)| ≤ L∥u − u′ ∥

 ℛc(̂π; π⋆) ≤ L ⋅ 𝔼π⋆[∑H
h=1 ∥π⋆(xt)− ̂π(xt)∥]

The Q function in Deterministic Control

Corollary: If is Lipschitz in : , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′)| ≤ L∥u − u′ ∥

Lipschitz ensures linear-in-L compounding error! Qf, ̂π,c

 ℛc(̂π; π⋆) ≤ LH ⋅ 𝔼π⋆[∑H
h=1 ∥π⋆(xt)− ̂π(xt)∥ = L ⋅ ℛexpert,L1

(̂π; π⋆)

(see also Swamy et al. ’21)

The Q function in Deterministic Control

Corollary: If is Lipschitz in : , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′)| ≤ L∥u − u′ ∥

1. Low compounding error is guaranteed by insensitive

2. Large compounding error requires highly sensitive

3. Our Result (Re-Interpretation): Even if are open/closed-loop stable, it is
hard to both imitate and ensure is insensitive to perturbation

Qf, ̂π,c

Qf, ̂π,c

(f, π⋆)
π⋆ Qf, ̂π,c

 ℛc(̂π; π⋆) ≤ LH ⋅ ℛexpert,L1
(̂π; π⋆)

The Q function in Deterministic Control

Corollary: If is Lipschitz in : , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′)| ≤ L∥u − u′ ∥

 ℛc(̂π; π⋆) ≤ LH ⋅ ℛexpert,L1
(̂π; π⋆)

Takeaway for RL: Assumptions on the class of functions might not be fundamental!
Instead, we need to operate from first principles from the dynamics and (as we will see…)
policy classes!

Q

The Q function in Deterministic Control

Corollary: If is Lipschitz in : , then Qf, ̂π,c u |Qf, ̂π,c(x, u) − Qf, ̂π,c(x, u′)| ≤ L∥u − u′ ∥

Theorem (Pfrommer, S,J ’25): If is a sufficiently expressive set of cost
functions, then uniform Lipschitzness of over is equivalent to
incremental stability of

𝒞 = {c}
Qf, ̂π,c c ∈ 𝒞

(f, ̂π)

 ℛc(̂π; π⋆) ≤ LH ⋅ ℛexpert,L1
(̂π; π⋆)

Weirdness of Continuous
Action Spaces

(and the power of non-simple policies)

We need new notions of ‘coverage’

Theorem (Super Informal): If the expert trajectories are sufficiently “anti-
concentrated” in the sense that they have lower bounded “local variance”,
then we can imitate without compounding error.

Note: The expert always have “perfect coverage” of itself!

Takeaway: We need “metric,” not just “probabilistic” notions of coverage in
continuous action spaces!

Algorithmic takeaway: We prove in forthcoming work that adding some exploration
during data collection avoids compounding error, even if open-loop unstable.

Improper policies can be more powerful!

Theorem (Super Informal, forthcoming): Under
certain conditions, open-loop “chunks” of actions
can result in bounded compounding error!

Longer chunks = reduced compounding error!
See also Block et al ’24.

Food for thought: Stylizing Instability

e2

e1
state-space

 is destabilizing of one of two systemsK̂

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1
unstable

Stylizing Instability

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1
unstable

Observation: There is no linear feedback policy which
stabilizes for both choices of .

π(x) = kx
ξ

Proof: Under , we have π(x) = kx xt+1 = (k+ξρ)xt

: magnitude ∃ξ > 1

Stylizing Instability

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1
unstable

Observation: There is no linear feedback policy which
stabilizes for both choices of .

π(x) = kx
k

Corollary: There exists no smooth, deterministic policy which locally stabilizes.

Proof: Taylor Expansion and argue about linear approximation.

Stylizing Instability

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1
unstable

Observation: There is no linear feedback policy which
stabilizes for both choices of .

π(x) = kx
k

Corollary: There exists no simple policy which locally stabilizes.̂π(x) = mean(̂π(x)) + z

Proof: Taylor Expansion and argue about linear approximation + noise.

Lipschitz/smooth independent of x

Beyond Simple Policies

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a very “simple”, but time-varying linear policy
which stabilizes the dynamics to in two times steps!

Proof: π(x, t) = {ρx t even
−ρx t odd

Concentric Stabilization

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a deterministic, non-time varying but non-smooth
policy which stabilizes around 0.

Proof: π(x) = {ρx k even
−ρx k odd

|x | ∈ ((2ρ2)−k, (2ρ2)−(k−1)]

0

… …
k even k even k oddk odd

non-smooth

Benevolent Gambler’s Ruin

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a stochastic, bi-modal policy (i.e. not-simple) which
stabilizes to the origin with high-probability.

π(x) = {ρx w.p. 1/2
−ρx w.p 1/2

ℙ[xt+1 ≠ 0] = 2−t

t

x

Benevolent Gambler’s Ruin

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a stochastic, bi-modal policy (i.e. not-simple) which
stabilizes to the origin with high-probability.

π(x) = {ρx w.p. 1/2
−ρx w.p 1/2 randomization over uncertainty in dynamics

game: learner vs. “nature”

Benevolent Gambler’s Ruin

Scalar Dynamics , unknown, xt+1 = ξρxt + ut ξ ∈ {−1,1} ρ > 1

Observation: There is a stochastic, bi-modal policy (i.e. not-simple) which
stabilizes to the origin with high-probability.

randomization over uncertainty in dynamics

game: learner vs. “nature”

Diffusion Policy, Chi et. al ‘23

Surprising Takeaway: Stochastic, multi-modal policies can yield benefits,
even for imitating deterministic policies.

What are the fundamental benefits of generative
models for solving optimal control tasks?

Surprising Takeaway: Stochastic, multi-modal policies can yield benefits,
even for imitating deterministic policies.

Takeaway 2: Re-think our assumptions on the class of functions!Q

Takeaway 3: Re-thinking coverage for continuous action spaces!

Takeaway 4: Re-think policy parametrization for scaling robot learning!

… for you RL theorists:

