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1. Beholden to external dynamics

action u, 2. States and actions take continuous
values

, dynamics
pOhCy X1 = J(X;, Uy)

u, = m(x,)
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Pre-training in LLMs ¥ is Imitation

A large language model (LLM) is a type of machine Iearning (source: Wikipedia)

\/

We treat natural human language as an

expert demonstrator which we aim to
imitate.
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Our aim is to predict a “next action” (robot action) from observation (pixels, tactile sensing.)
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How is imitation (e.g. pretraining) different in the physical

v.s. discrete settings?
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This Talk.

Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

Demonstrate how imitation is considerably more challenging in
the physical world & than in the discrete world .

Explain that that popular design decisions from today’s world of
robotics are not just helpful, but indispensable.

(this is a theory talk)
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Collect n expert trajectories (xl 1 Uy.gy) ~ P_s.

actlon ut

= 7(x,) ( > X1 = S, uy)

state xt

Mininimize % (7; ) = E, H= ‘,,*[Zle c(x;, )]

excess cost cost under imitator cost under expert

“Horizon” H
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loss(x, x, u)

The Behavior Cloning Algorithm: 7 ~ arg min > () Eexpert data

A H A
(70, 1) = —ﬂ*[zhzl loss(7, 7%, )]

loss of imitator under expert distribution

Compare to %

expert

This can be minimized with pure supervised learning
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Mininimize £ (7; %) = A Zle c(x, u)|—1E 22{:1 c(x, u,)]

excess cost cost under imitator cost under expert

Compal‘e to ‘%expert(ﬁ.; 77«'*) — _72'*[ ZZIZI lOSS(ﬁ', ﬂ*a ut)]

loss of imitator under expert distribution

The gap between these two is called the compounding error problem.
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excess cost cost under imitator cost under expert

"- Expert Trajectory 7% - @ — 9/

, . Challenge A: Error accumulates over time steps,
‘ Learner Trajectory 77 . X — U

larger with larger H.

Challenge B: After error has accumulated, we
are now out of distribution.
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probabilistic errors accumulate at most linearly.

Theorem:If loss(z, x, u) = 1,,,_,is the zero-one loss,
and that c(x, u) is bounded in [O,1]. Then, for all (7; z*)

Improvements due to Foster et al. "24 for the Log Loss.
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Theorem:If loss(z, x, u) = 1,,,_,is the zero-one loss,
and that c(x, u) is bounded in [O,1]. Then, for all (7; z*)

A ¢
expert(ﬂ’ l )

Crucially relies probabilistic errors + discreteness of actions!
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Probabilistic Error? Perturbative Error!

Sometime much worse?
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Act 2: “Learning in the Physical World is
Harder”

w/ Daniel Pfrommer, Ali Jadbabaie (MIT).
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action Assumptions: “Things are nice”

policy dynamics 1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

Takeaway: learning in the physical world & can
be hard even if the problems seems benign
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Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.
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said to be stable if it has limited sensitivity to
perturbations of input.
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‘J pivot 4R Definition: Dynamics x,. | = f(x,, u,) are (C, p)
-stable if, for same initial condition x,;=x;

I/, =x/ | < C ) p ==

s<t

p € (0,1) = exponentially quick forgetting of mistakes
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We assume that the following are (C, p) stable
1. “open loop” (x, u) — f(x, u)

2. “closed loop” (x, u) = f(x, 77 (x) + u)
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We assume that the following are (C, p) stable
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We assume that the following are (C, p) stable
1. “open loop” (x, u) — f(x, u)

2. “closed loop” (x, u) = f(x, 77 (x) + u)
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This is surprising. stable

Takeaway: learning in the physical world & can
be hard even if the problems seems benign

Recall error compound exponentially & (7; 7*) 2 2" - R expert(TT; ™)

But dynamics forget mistakes exponentially quickly
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Learned policies cannot both follow the expert and stabilize unknown dynamics
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Step 2: Carefully embed a nonparametric learning problem as a source of original
error, which becomes amplified by dynamical instability.
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Proof Idea: ‘Catch 22’

)

X1 = A+ iy,

K destabilizing

state-space
€1

7 —

Step 2: Carefully embed a nonparametric learning problem as a source of original
error, which becomes amplified by dynamical instability.

Note: This does not arise in the classical bound due to absence of “metric” error
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Proof Idea: ‘Catch 22’

K is destabilizing

Sstate-space

€1

/ -

”

Learned policies cannot both follow the expert and stabilize unknown dynamics

Because the Physical World & involves “perturbative error,”
pushing us out of distribution, learning can be much harder!
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Act 3: “What to do about it?”

w/ Thomas Zhang, Daniel Pfrommer, Nikolai Matni (UPenn+MIT)
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applies to stable dynamics if 7 is a “simple policy”
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The Caveat

While the negative result holds if dynamics are unstable, it only
applies to stable dynamics if 7 is a “simple policy”

note: expert is also ‘simple’

Unlike language pertaining, naive imitation does not work.
However, better policy representation + better data can
overcome the challenges of physical world learning .
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Action Chunking

Definition: Action Chunking is the practice of predicting a sequence of k > 1
inputs (¢, U,, ..., 4;) at a time, and committing to them.
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Action Chunking

Definition: Action Chunking is the practice of predicting a sequence of k > 1
inputs (¢, U,, ..., 4;) at a time, and committing to them.

One of the most essential practices in modern robotics, but hitherto mysterious.
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What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

independent of horizon!
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Sstate-space k’

open-loop (‘passively’) stable ¢
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But what about unstable dynamics?

Ayl = i (xt’ ut) f‘ ‘w

Inverted Pendulum
unstable
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Inverted Pendulum
unstable

“critical moment”
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But what about unstable dynamics?

: | $0
l/tt d

-
\
>,

o

“critical moment”

~

pivot

Inverted Pendulum
unstable

Theorem (SPJ): Given only expert demonstration data, no algorithm (no
matter how clever!) can imitate without exponential compounding error.



The power of data augmentation.
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Many pathologies in the Physical World & come from
incomplete knowledge of system dynamics.

41



Conclusion: Where next for Physical AI?
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incomplete knowledge of system dynamics.
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Exploration + World Modeling

Many pathologies in the Physical World & come from
incomplete knowledge of system dynamics.

DPPO: Diffusion Policy Policy Optimization
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