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Why AI is harder in the Physical 
World  🤖

… and what to maybe do about it
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The Physical World 🤖 v.s. The Discrete World 📚

action ut

state xt

dynamics
policy xt+1 = f(xt, ut)ut = π(xt)

1. Beholden to external dynamics 

2. States and actions take continuous 
values
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Pre-training in LLMs 📚 is Imitation

We treat natural human language as an 
expert demonstrator which we aim to 
imitate. 

(source: Wikipedia)
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Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

We treat use a human expert 
demonstrator which we aim to imitate. 

Our aim is to predict a “next action” (robot action) from observation (pixels, tactile sensing.)7
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Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

How is imitation (e.g. pretraining) different in the physical 
v.s. discrete settings? 
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(this is a theory talk)

1. Introduce a formal setting of imitation learning (motivated by 
robotic pretraining).

2. Demonstrate how imitation is considerably more challenging in 
the physical world 🤖 than in the discrete world 📚.

3. Explain that that popular design decisions from today’s world of 
robotics are not just helpful, but indispensable.
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action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

Collect n expert trajectories . (x1:H, u1:H) ∼ ℙπ⋆

Mininimize  ℛc( ̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]

“Horizon” H

excess cost cost under imitator cost under expert 
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The gap between these two is called the compounding error problem. 
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loss(π, x, u) = 1π(x)=u
c(x, u) ( ̂π; π⋆)

ℛc( ̂π; π⋆) ≤ H ⋅ ℛexpert( ̂π; π⋆)
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Compounding In the Discrete World 📚

Mininimize  ℛc( ̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert 

Theorem: If   is the zero-one loss, 
and that  is bounded in [0,1]. Then, for all 

loss(π, x, u) = 1π(x)=u
c(x, u) ( ̂π; π⋆)

ℛc( ̂π; π⋆) ≤ H ⋅ ℛexpert( ̂π; π⋆)

Crucially relies probabilistic errors +  discreteness of actions!
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Compounding in Physical World 🤖?

📚 Limited Compounding w/ 
Probabilistic Error? 

Expert Trajectory

Learner Trajectory

Sometime much worse?
Perturbative Error! 🤖
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Act 2: “Learning in the Physical World is 
Harder”

w/ Daniel Pfrommer, Ali Jadbabaie (MIT). 
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1. dynamics + policy are smooth+deterministic 
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3. dynamics are stable.

Takeaway: learning in the physical world 🤖 can 
be hard even if the problems seems benign
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Theorem (SPJ): Let n be the number of expert trajectories. For any 
, there exists a family of nice behavior cloning problems s.t.:ϵ(n) ∝ n−k

Cost  ℛc( ̂π; π⋆) ≳ min {2Hϵ(n), 1}Expert Error  ℛexpert( ̂π; π⋆) ≤ ϵ(n)

Behavior Cloning achieve this! Any* algorithm using expert data suffers.

Including: inverse RL and offline RL!

Exponential worse that    if 📚ℛc( ̂π; π⋆) ≤ H ⋅ ϵ(n)
*Caveat for the end…..22
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Control Theoretic Stability 🤸

Definition (Informal): A dynamical system is 
said to be stable if it has limited sensitivity to 
perturbations of input. 

unstablestable

Definition: Dynamics  are 
-stable if, for same initial condition 

xt+1 = f(xt, ut) (C, ρ)
x1=x′ 1

∥x′ t+1−x′ t+1∥ ≤ C∑
s≤t

ρt−s∥us−u′ s∥

 = exponentially quick forgetting of mistakesρ ∈ (0,1)
24
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We assume that the following are  stable(C, ρ)

1. “open loop” (x, u) → f(x, u)
2. “closed loop” (x, u) → f(x, π⋆(x) + u)

xt+1 = f(xt, ut)
xtut

x′ tu′ t

open-loop stable
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closed-loop stablext+1 = f(xt, ut)u = π⋆(x)
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Recall error compound exponentially     ℛc( ̂π; π⋆) ≳ 2H ⋅ ℛexpert( ̂π; π⋆)

But dynamics forget mistakes exponentially quickly

stable

27

Takeaway: learning in the physical world 🤖 can 
be hard even if the problems seems benign
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Step 2: Carefully embed a nonparametric learning problem as a source of original 
error, which becomes amplified by dynamical instability. 

Proof Idea: ‘Catch 22’
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e2

e1

state-spacex1x0

xt+1 = Aixt + ut

 destabilizingK̂

Step 2: Carefully embed a nonparametric learning problem as a source of original 
error, which becomes amplified by dynamical instability. 

Note: This does not arise in the classical bound due to absence of “metric” error

Proof Idea: ‘Catch 22’
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Proof Idea: ‘Catch 22’

Learned policies cannot both follow the expert and stabilize unknown dynamics

Because the Physical World 🤖 involves “perturbative error,” 
pushing us out of distribution, learning can be much harder!

e2

e1
state-space

 is destabilizingK̂
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Act 3: “What to do about it?”

w/ Thomas Zhang, Daniel Pfrommer, Nikolai Matni (UPenn+MIT)
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The Caveat 

Unlike language pertaining, naive imitation does not work. 
However, better policy representation + better data can 
overcome the challenges of physical world learning 🤖.

While the negative result holds if dynamics are unstable, it only 
applies to stable dynamics if  is a “simple policy”̂π

    + ̂π(x) = πdeterm(x) (independent noise)
note: expert is also ‘simple’
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Action Chunking
Definition: Action Chunking is the practice of predicting a sequence of  
inputs  at a time, and committing to them.

k ≥ 1
(u1, u2, …, uk)

One of the most essential practices in modern robotics, but hitherto mysterious.
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What We Get from Action Chunking

Theorem (ZPMS):  Given an open-loop stable system, there exists a fixed k such 
that (independent of data amount n), s.t. k-action chunking gives

    ℛc( ̂π; π⋆) ≤ Csys ℛexpert( ̂π; π⋆)

35
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Theorem (ZPMS):  Given an open-loop stable system, there exists a fixed k such 
that (independent of data amount n), s.t. k-action chunking gives

    ℛc( ̂π; π⋆) ≤ Csys ℛexpert( ̂π; π⋆)

Proof Idea: recall that, without action chunking, 

xt+1 = f(xt, ut)u = ̂π(x)
spiral out of control.
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But what about unstable dynamics?

xt+1 = f(xt, ut)
xtut

x′ tu′ t

unstable
“critical moment”

Theorem (SPJ): Given only expert demonstration data, no algorithm (no 
matter how clever!) can imitate without exponential compounding error. 
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Many pathologies in the Physical World 🤖 come from 
incomplete knowledge of system dynamics. 



Conclusion: Where next for Physical AI?
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VLM

What did I leave on the sofa? A) Hat 
B) Backpack C) Laptop D) Jacket

Semantic 
values

Semantic-value-weighted 
Exploration

(x, y, yaw) Next Pose

New Observation

Semantic map

A - 0.28
B - 0.17
C - 0.12
D - 0.43

Stop?
Answer 

prediction

Question-Image 
relevance

0.10 1.72
0.98
0.59

(3) 

(1)

(2) 

Initial

Goal

Node 1 is connected to 2, 3
Node 2 is connected to 1, 2, 3, 5
….
Node 7 is connected to 6

Initial: 2
Goal: 7

Graph Planning

Plan the shortest path from 
initial to goal

Forward planning

Plan the shortest path from 
goal to initial

Backward planning

[0, 3, 1, 4]

[4, 1, 3, 0]

Array Transformation

reverse

[3, 1, 4, 0]shift_left 

...

[1, 3, 0, 4]shift_left 

swap [0, 1, 4, 3]

[0, 4, 1, 3]reverse

Blocksworld
Initial:

Orange on blue, 
yellow on red 

Goal:
Orange on red 

DPPO: Diǒusion Policy Policy Optimization

Structured exploration Training stability Policy robustness

Environment MDP

Diffusion 
MDP

Diffusion 
MDP

DPPO: Diffusion Policy Policy Optimization

Structured exploration Training stability Policy robustness

Environment MDP

Diffusion 
MDP

Diffusion 
MDP

Diffusion 
MDP

Diffusion 
MDP

Policy 
Gradient 
Update
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