Why Alis harder in the Physical
World &

... and what to maybe do about it

Max Simchowitz CMU

Why are we working on Al?

Why are we working on Al?

“Vision of the Future” - Family Guy™

Why are we working on Al?

“Vision of the Future” - Family Guy™

Al in the Physical World &

Alin the Physical World &

Alin the Physical World &

Alin the Physical World &

Alin the Physical World &

651 P 3011 A

s 3 7" % l‘ 1

The Physical World & v.s. The Discrete World

The Physical World & v.s. The Discrete World &

The Physical World & v.s. The Discrete World €

action u,

policy X = fx,u,)

dynamics

u, = m(x,)

The Physical World & v.s. The Discrete World &

GPT-

action u,

pOliCy X1 = J(X;, Uy)

dynamics LLM concat.

u, = m(x,)

The Physical World & v.s. The Discrete World &

action u,

pOliCy xt+1 — f (Xt, l/tt)

dynamics

ut — ﬂ(xt)

The Physical World & v.s. The Discrete World &

1. Beholden to external dynamics

action u, 2. States and actions take continuous
values

, dynamics
pOhCy X1 = J(X;, Uy)

u, = m(x,)

Pre-training in LLMs ¥ is Imitation

Pre-training in LLMs ¥ is Imitation

Pre-training in LLMs ¥ is Imitation

A large language model (LLM) is a type of machine Iearning (source: Wikipedia)

\/

We treat natural human language as an

expert demonstrator which we aim to
imitate.

Imitation in the Physical World &

actlon ut

= m(x,) (> X1 = S (X 1)

state xt

TOYOTA
RESEARCH INSTITUTE

Imitation in the Physical World &

actlon ut

= m(x,) (> X1 = S (X 1)

state xt

TOYOTA
RESEARCH INSTITUTE

Imitation in the Physical World &

action u,
> Xep1 = J O 1)

u, = m(x,) (

We treat use a human expert

demonstrator which we aim to imitate.

Imitation in the Physical World &

actlon ut

= (x,) (> X1 = S, uy)

state xt

We treat use a human expert

demonstrator which we aim to imitate.

Our aim is to predict a “next action” (robot action) from observation (pixels, tactile sensing.)

Imitation in the Physical World &

actlon ut

= m(x,) (> X1 = S (X 1)

state xt

TOYOTA
RESEARCH INSTITUTE

Imitation in the Physical World &

actlon ut

= m(x,) (> X1 = S (X 1)

state xt

TOYOTA
RESEARCH INSTITUTE

Imitation in the Physical World &

actlon ut

= (x,) () X1 = S, uy)

state xt

How is imitation (e.g. pretraining) different in the physical

v.s. discrete settings?

This Talk.

This Talk.

1. Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

This Talk.

1. Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

This Talk.

Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

Demonstrate how imitation is considerably more challenging in
the physical world & than in the discrete world .

This Talk.

Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

Demonstrate how imitation is considerably more challenging in
the physical world & than in the discrete world .

This Talk.

Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

Demonstrate how imitation is considerably more challenging in
the physical world & than in the discrete world .

Explain that that popular design decisions from today’s world of
robotics are not just helpful, but indispensable.

This Talk.

Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

Demonstrate how imitation is considerably more challenging in
the physical world & than in the discrete world .

Explain that that popular design decisions from today’s world of
robotics are not just helpful, but indispensable.

(this is a theory talk)

Imitation in the Physical World &

actlon ut

= 7(x,) (> X1 = S, uy)

state xt

10

Imitation in the Physical World &

actlon ut

= 7(x,) (> X1 = S, uy)

state xt

10

Imitation in the Physical World &

Collect n expert tra]ectorles (xl 2k up.p) ~ P

actlon ut

= 7(x,) (> X1 = S, uy)

state xt

10

Imitation in the Physical World &

Collect n expert trajectories (xl 1 Uy.gy) ~ P_s.

actlon ut

= 7(x,) (> X1 = S, uy)

state xt

Mininimize X (7, 1) =

10

Imitation in the Physical World &

Collect n expert trajectories (xl 1 Uy.gy) ~ P_s.

actlon ut

= 7(x,) (> X1 = S, uy)

state xt

Mininimize X (7, 1) =

excess cost

10

Imitation in the Physical World &

Collect n expert trajectories (xl 1 Uy.gy) ~ P_s.

actlon ut

= 7(x,) (> X1 = S, uy)

state xt

Mininimize X (7, 1) =

excess cost cost under imitator

10

Imitation in the Physical World &

Collect n expert trajectories (xl 1 Uy.gy) ~ P_s.

actlon ut

= 7(x,) (> X1 = S, uy)

state xt

Mininimize % (7;) = E, H= ‘,,*[Zle c(x;,)]

excess cost cost under imitator cost under expert

10

Imitation in the Physical World &

Collect n expert trajectories (xl 1 Uy.gy) ~ P_s.

actlon ut

= 7(x,) (> X1 = S, uy)

state xt

Mininimize % (7;) = E, H= ‘,,*[Zle c(x;,)]

excess cost cost under imitator cost under expert

“Horizon” H

10

Example Algorithm: Behavior Cloning.

[

Example Algorithm: Behavior Cloning.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Zle c(x, u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg min) loss(z, x, u)

(x,u)€expert data

[

Example Algorithm: Behavior Cloning.

Mininimize % (7, 7%) = E LY (o u)l=E [X5 c(x,u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg min) loss(z, x, u)

(x,u)€expert data

Example Algorithm: Behavior Cloning.

Mininimize % (7, 7%) = E LY (o u)l=E [X5 c(x,u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg min) loss(z, x, u)

(x,u)€expert data

Example Algorithm: Behavior Cloning.

Mininimize % (7, 7%) = E LY (o u)l=E [X5 c(x,u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg min) loss(z, x, u)

(x,u)€expert data

Example Algorithm: Behavior Cloning.

Mininimize % (7, 7%) = E LY (o u)l=E [X5 c(x,u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg min) loss(z, x, u)

(x,u)€expert data

Example Algorithm: Behavior Cloning.

Mininimize % (7; 77) = E [Zle c(x,, u,)]—Lt ﬂ*[z,ljzl c(x, u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg min) loss(z, x, u)

(x,u)eexpert data

Example 1: loss(z, x,) = ||u — 7(x)||? (7™ is deterministic)
Example 2: loss(z, x,u) = 1,,_, (7™ is discrete)

Example 3: loss(z, x, u) = log n(u | x)

1

Example Algorithm: Behavior Cloning.

Mininimize % (7; 77) = E [Zle c(x,, u,)]—Lt ﬂ*[z,ljzl c(x, u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg min) loss(z, x, u)

(x,u)eexpert data

Example 1: loss(z, x,) = ||u — 7(x)||? (7™ is deterministic)
Example 2: loss(z, x,u) = 1,,_, (7™ is discrete)

Example 3: loss(z, x, u) = log 7(u | x) (7™ is discrete, or £*(x) has density)

1

Example Algorithm: Behavior Cloning.

Mininimize % (7; 77) = E [Zle c(x,, u,)]—Lt ﬂ*[z,ljzl c(x, u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg m;n > (e)eexpert data loss(z, x, u)
Example 1: loss(z, x,) = ||u — 7(x)||? (7™ is deterministic)
Example 2: loss(z, x,u) = 1,,_, (7™ is discrete)
Example 3: loss(z, x, u) = log 7(u | x) (7™ is discrete, or 7*(x) has density)

Example 4: loss(xz, x, u) = (Score Matching)

Example Algorithm: Behavior Cloning.

Mininimize % (7; 77) = E [Zle c(x,, u,)]—Lt ﬂ*[z,ljzl c(x, u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg m;n > (e)eexpert data loss(z, x, u)
Example 1: loss(z, x,) = ||u — 7(x)||? (7™ is deterministic)
Example 2: loss(z, x,u) = 1,,_, (7™ is discrete)
Example 3: loss(z, x, u) = log 7(u | x) (7™ is discrete, or 7*(x) has density)

Example 4: loss(z, x, u) = (Score Matching) (popular in robotics)

Example Algorithm: Behavior Cloning.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Zle c(x, u,)]

excess cost cost under imitator cost under expert

The Behavior Cloning Algorithm: 7 ~ arg min) loss(z, x, u)

(x,u)€expert data

12

Example Algorithm: Behavior Cloning.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Zle c(x, u,)]

excess cost cost under imitator cost under expert

loss(x, x, u)

The Behavior Cloning Algorithm: 7 ~ arg min > () Eexpert data

A H A
(70, 1) = —ﬂ*[zhzl loss(7, 7%,)]

loss of imitator under expert distribution

Compare to %

expert

12

Example Algorithm: Behavior Cloning.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘ﬂ*[zzil c(x, u,)]

excess cost cost under imitator cost under expert

loss(x, x, u)

The Behavior Cloning Algorithm: 7 ~ arg min > () Eexpert data

A H A
(70, 1) = —ﬂ*[zhzl loss(7, 7%,)]

loss of imitator under expert distribution

Compare to %

expert

This can be minimized with pure supervised learning

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘ﬂ*[zzil c(x, u,)]

excess cost cost under imitator cost under expert

A H A
(7, 77) = ~ ol 2, loss(7, 7", u,)]

loss of imitator under expert distribution

Compare to £

expert

13

Mininimize £ (7; %) = A Zle c(x, u)|—1E 22{:1 c(x, u,)]

excess cost cost under imitator cost under expert

Compal‘e to ‘%expert(ﬁ.; 77«'*) — _72'*[ZZIZI lOSS(ﬁ', ﬂ*a ut)]

loss of imitator under expert distribution

The gap between these two is called the compounding error problem.

13

The Compounding Error Problem.

The Compounding Error Problem.

A H A
R expertT;) = [E ﬂ*[zhzl loss(, 77, u,)]

14

The Compounding Error Problem.

A H A
Rexpert T3 17) = E L[X,_ loss(7, 77, u,)]

"- Expert Trajectory 7% - @ — 9/

14

The Compounding Error Problem.

A H A
Rexpert T3 17) = E L[X,_ loss(7, 77, u,)]

"- Expert Trajectory 7% - @ — 9/

* _ & _
X[=X =x

14

The Compounding Error Problem.

A H A
Roexpert T3 7°) = E [X" loss(7, 7%, u,)]

"- Expert Trajectory 7% - @ — 9/

X &
X[=X =x

14

The Compounding Error Problem.

A H A
Roexpert T3 7°) = E [X" loss(7, 7%, u,)]

"- Expert Trajectory 7% - @ — 9/

X &
X[=X =x

14

The Compounding Error Problem.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Zle c(x, u,)]

excess cost cost under imitator cost under expert

"- Expert Trajectory 7% - @ — 9/

15

The Compounding Error Problem.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Zle c(x, u,)]

excess cost cost under imitator cost under expert

"- Expert Trajectory 7% - @ — 9/

‘ Learner Trajectory 77 . X — U

15

The Compounding Error Problem.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Zle c(x, u,)]

excess cost cost under imitator cost under expert

"- Expert Trajectory 7% - @ — 9/

‘ Learner Trajectory 77 . X — U

15

The Compounding Error Problem.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Zle c(x, u,)]

excess cost cost under imitator cost under expert

"- Expert Trajectory 7% - @ — 9/

‘ Learner Trajectory 77 . X — U

15

The Compounding Error Problem.

Mininimize £ (7; %) = A Zle c(x, u)|—1E 22{:1 c(x, u,)]

excess cost cost under imitator cost under expert

"- Expert Trajectory 7% - @ — 9/

‘ Learner Trajectory 77 . X — U

15

The Compounding Error Problem.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Z:[:l c(x, u,)]

excess cost cost under imitator cost under expert

"- Expert Trajectory 7% - @ — 9/

, . o> Challenge A: Error accumulates over time steps,
‘ Learner Trajectory 7 . A —> U 7+1

® larger with larger H.

15

The Compounding Error Problem.

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘,,*[Z:[:l c(x, u,)]

excess cost cost under imitator cost under expert

"- Expert Trajectory 7% - @ — 9/

, . Challenge A: Error accumulates over time steps,
‘ Learner Trajectory 77 . X — U

larger with larger H.

Challenge B: After error has accumulated, we
are now out of distribution.

15

Compounding In the Discrete World &

16

Compounding In the Discrete World &

16

Compounding In the Discrete World &

16

Compounding In the Discrete World ¥

16

Compounding In the Discrete World &

probabilistic errors accumulate at most linearly.

16

Compounding In the Discrete World &

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘ﬂ*[zzil c(x, u,)]

excess cost cost under imitator cost under expert

W

@-0-009
O

probabilistic errors accumulate at most linearly.

Theorem:If loss(z, x, u) = 1,,,_,is the zero-one loss,
and that c(x, u) is bounded in [O,1]. Then, for all (7; z*)

16

Compounding In the Discrete World &

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘ﬂ*[zzil c(x, u,)]

excess cost cost under imitator cost under expert

W

@-0-009
O

probabilistic errors accumulate at most linearly.

Theorem:If loss(z, x, u) = 1,,,_,is the zero-one loss,
and that c(x, u) is bounded in [O,1]. Then, for all (7; z*)

Improvements due to Foster et al. "24 for the Log Loss.

16

Compounding In the Discrete World &

Mininimize £ (7; %) = A Zle c(x,, u,)]— ‘ﬂ*[zzil c(x, u,)]

excess cost cost under imitator cost under expert

W

-0 009

O R(n*)<H - R

Theorem:If loss(z, x, u) = 1,,,_,is the zero-one loss,
and that c(x, u) is bounded in [O,1]. Then, for all (7; z*)

A ¢
expert(ﬂ’ l)

Crucially relies probabilistic errors + discreteness of actions!

17

Compounding in Physical World &?

Compounding in Physical World &?

S TN N

00090
O O

Compounding in Physical World &?

S TN N

00090
O O

& Limited Compounding w/
Probabilistic Error?

18

Compounding in Physical World &?

/_\ /\ /\ ‘ Expert Traiectory

‘ Learner Trajectory
e — e

‘%‘7 4". ° e
& Limited Compounding w/

Probabilistic Error?

18

Compounding in Physical World &?

/\ /\ /\ ‘ Expert Traiectory

‘ Learner Trajectory
e — e

‘%‘7 4". ° e
@
& Limited Compounding w/

Probabilistic Error? Perturbative Error!

18

Compounding in Physical World &?

/_\ /\ /\ ‘ Expert Traiectory

‘ Learner Trajectory
e — e

‘%‘7 4". ° e
@
& Limited Compounding w/

Probabilistic Error? Perturbative Error!

Sometime much worse?

18

Act 2: “Learning in the Physical World is
Harder”

w/ Daniel Pfrommer, Ali Jadbabaie (MIT).

19

An Informal Theorem &

20

An Informal Theorem &3

action

. (> dynamics
policy

20

An Informal Theorem &3

action Assumptions: “Things are nice”

, (> dynamics
policy

20

An Informal Theorem &

action Assumptions: “Things are nice”

policy dynamics 1. dynamics + policy are smooth+deterministic

20

An Informal Theorem &3

action Assumptions: “Things are nice”

policy dynamics 1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

20

An Informal Theorem &

action Assumptions: “Things are nice”

policy dynamics 1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

20

An Informal Theorem &3

action Assumptions: “Things are nice”

policy dynamics 1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

Takeaway: learning in the physical world & can
be hard even if the problems seems benign

20

An Informal Theorem g

action Assumptions: “Things are nice”

dynamics 1. dynamics + policy are smooth+deterministic

policy

2. cost function is smooth and bounded.

3. dynamics are stable.

21

An Informal Theorem &3

action Assumptions: “Things are nice”

dynamics 1. dynamics + policy are smooth+deterministic

policy

2. cost function is smooth and bounded.

3. dynamics are stable.

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~*, there exists a family of nice behavior cloning problems where:

21

An Informal Theorem &3

action Assumptions: “Things are nice”

dynamics 1. dynamics + policy are smooth+deterministic

policy

2. cost function is smooth and bounded.

3. dynamics are stable.

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~*, there exists a family of nice behavior cloning problems where:

Expert Error #, ..(7; 7*) < e(n)

21

An Informal Theorem &3

action Assumptions: “Things are nice”

dynamics 1. dynamics + policy are smooth+deterministic

policy

2. cost function is smooth and bounded.

3. dynamics are stable.

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~*, there exists a family of nice behavior cloning problems where:

Expert Error #, ..(7;) < e(n) Cost £ (7; 7) 2 min {2H€(n), 1}

21

An Informal Theorem &3

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~* there exists a family of nice behavior cloning problems s.t.:

Expert Error £, . (7;) < e(n) Cost Z (#; 77) 2 min {2H€(n), 1}

22

An Informal Theorem &3

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~* there exists a family of nice behavior cloning problems s.t.:

Expert Error £, . (7;) < e(n) Cost Z (#; 77) 2 min {2H€(n), 1}

Behavior Cloning achieve this!

22

An Informal Theorem &3

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~* there exists a family of nice behavior cloning problems s.t.:

Expert Error # (7, 77) < e(n) Cost Z (#; 77) 2 min {ZHe(n), 1}

expert

Behavior Cloning achieve this! Any* algorithm using expert data suffers.

22

An Informal Theorem &3

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~* there exists a family of nice behavior cloning problems s.t.:

Expert Error # (7, 77) < e(n) Cost Z (#; 77) 2 min {ZHe(n), 1}

expert

Behavior Cloning achieve this!

Any* algorithm using expert data suffers.

Including: inverse RL and offline RL!

22

An Informal Theorem &3

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~* there exists a family of nice behavior cloning problems s.t.:

Expert Error # (7, 77) < e(n) Cost Z (#; 77) 2 min {ZHe(n), 1}

expert

Behavior Cloning achieve this!

Any* algorithm using expert data suffers.

Including: inverse RL and offline RL!

Exponential worse that £ (7; 7*) < H - ¢(n) if &

22

An Informal Theorem &3

Theorem (SPJ): Let n be the number of expert trajectories. For any
e(n) x n~* there exists a family of nice behavior cloning problems s.t.:

Expert Error # (7, 77) < e(n) Cost Z (#; 77) 2 min {ZHe(n), 1}

expert

Behavior Cloning achieve this!

Any* algorithm using expert data suffers.

Including: inverse RL and offline RL!

Exponential worse that £ (7; 7*) < H - ¢(n) if &

22 *Caveat for the end.....

Control Theoretic Stability

Control Theoretic Stability 1

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

23

Control Theoretic Stability

f
|"|l||
/|
'
{ '
L
/)
{ {
/ '
'
/ {
'
i
/|
(o
'
i
!
|
(|
/)
()
{ {
0 ci !
O
O
O
a

Pendulum Inverted Pendulum
stable unstable

said to be stable if it has limited sensitivity to
perturbations of input.

W Definition (Informal): A dynamical system is

pivot £

23

Control Theoretic Stability

O l"lll
()
a
O
O
O

Pendulum Inverted Pendulum
stable unstable

Definition (Informal): A dynamical system is
w said to be stable if it has limited sensitivity to
perturbations of input.

pivot £

naturally related to compounding error.

23

Control Theoretic Stability

O l"lll
()
a
O
O
O

Definition (Informal): A dynamical system is
w said to be stable if it has limited sensitivity to
perturbations of input.

Ivot £
P naturally related to compounding error.
Pendulum Inverted Pendulum ® cowert o)
stable unstable ® Leamer/v

'%t 0.

23

Control Theoretic Stability

f
|"|l||
/|
'
{ '
L
/)
{ {
/ '
'
/ {
'
i
/|
(o
'
i
!
|
(|
/)
()
{ {
0 ci !
O
O
O
a

Pendulum Inverted Pendulum
stable unstable

said to be stable if it has limited sensitivity to
perturbations of input.

W Definition (Informal): A dynamical system is

pivot £

24

pivot

O
O
0
O
O

Pendulum
stable

Control Theoretic Stability

~

Inverted Pendulum
unstable

~

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

Definition: Dynamics x,. | = f(x,, u,) are (C, p)
-stable if, for same initial condition x,;=x;

I/, =x/ | < C) p ==

s<t

24

Control Theoretic Stability

-~

pivot

said to be stable if it has limited sensitivity to
perturbations of input.

w Definition (Informal): A dynamical system is

O
o
a
O
O

Pendulum Inverted Pendulum
stable unstable

‘J pivot 4R Definition: Dynamics x,. | = f(x,, u,) are (C, p)
-stable if, for same initial condition x,;=x;

I/, =x/ | < C) p ==

s<t

p € (0,1) = exponentially quick forgetting of mistakes

Control Theoretic Stability 7 b

O
O
O
O
a

Control Theoretic Stability ¥ stable

We assume that the following are (C, p) stable

a i
o
O
O
0O
O

25

Control Theoretic Stability ¥ stable

We assume that the following are (C, p) stable

1. “open loop” (x, u) — f(x, u)

0
O
O
0
O
O

25

~

Control Theoretic Stability stable

We assume that the following are (C, p) stable

1. “open loop” (x, u) — f(x, u)

Xy

o e
open-loop stable

4
{ , —_— —>,
y U, Ay

$

25

~

Control Theoretic Stability stable

We assume that the following are (C, p) stable
1. “open loop” (x, u) — f(x, u)

2. “closed loop” (x, u) = f(x, 77 (x) + u)

Xy

Uy
— —
X1 = J(x;, u,) open-loop stable
/ | xt,

4
d “

$

25

~

Control Theoretic Stability stable

We assume that the following are (C, p) stable
1. “open loop” (x, u) — f(x, u)

2. “closed loop” (x, u) = f(x, 77 (x) + u)

Xy

é U,
—— ————eee)
{ . | open-loop stable
y U, Xt
closed-loop stable
P é
~ ANy

4

$

This is surprising. stable

We assume that the following are (C, p) stable
1. “open loop” (x, u) — f(x, u)

2. “closed loop” (x, u) = f(x, 77 (x) + u)

26

This is surprising. stable

C

We assume that the following are (C, p) stable

1. “open loop” (x, u) — f(x, u)

2. “closed loop” (x, u) — f(x, 77 (x) + u) k,

Recall error compound exponentially & (7; 7*) 2 2" - R expert(TT; ™)

26

This is surprising. stable

C

We assume that the following are (C, p) stable

1. “open loop” (x, u) — f(x, u)

2. “closed loop” (x, u) — f(x, 77 (x) + u) k,

Recall error compound exponentially & (7; 7*) 2 2" - R expert(TT; ™)

But dynamics forget mistakes exponentially quickly

26

This is surprising. stable

C

O
O
O
O
a

Recall error compound exponentially & (7; 7*) 2 2" - R expert(TT; ™)

But dynamics forget mistakes exponentially quickly

27

This is surprising. stable

Takeaway: learning in the physical world & can
be hard even if the problems seems benign

Recall error compound exponentially & (7; 7*) 2 2" - R expert(TT; ™)

But dynamics forget mistakes exponentially quickly

27

The Catch.

stable

Xy

A ¢ "
—
. Xir1 = f (xt’ ut)
—
y Uy :

Xy

=
.. 7

¢

28

The Catch.

& 4 A
——————
——
d Iy At
B :
\ /

stable

Xy
/

The Catch.

stable

) & U, At
—_—
. X1 = f(x, u,)
—_—
4 . x;

)
\' 4/

Inverted Pendulum

unstable

29

Proof Idea: “Catch 22”

Proof Idea: “Catch 22”

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system x,. ; = A;x, + u, and associated linear control policies 7,(x) = K;x s.t.

29

Proof Idea: “Catch 22”

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system x,. ; = A;x, + u, and associated linear control policies 7,(x) = K;x s.t.

state-space

29

Proof Idea: “Catch 22”

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system x,. ; = A;x, + u, and associated linear control policies 7,(x) = K;x s.t.

state-space

29

Proof Idea: “Catch 22”

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system x,. ; = A;x, + u, and associated linear control policies 7,(x) = K;x s.t.

If u = Kx agrees with data on ¢, ”
e EE— 2

state-space

29

Proof Idea: “Catch 22”

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system x,. ; = A;x, + u, and associated linear control policies 7,(x) = K;x s.t.

If u = Kx agrees with data on ¢, ”
e EE— 2

state-space

29

Proof Idea: “Catch 22”

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system x,. ; = A;x, + u, and associated linear control policies 7,(x) = K;x s.t.

If u = Kx agrees with data on ¢, ”
e EE— 2

state-space

29

Proof Idea: “Catch 22”

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system x,. ; = A;x, + u, and associated linear control policies 7,(x) = K;x s.t.

If u = Kx agrees with data on ¢, ”
e EE— 2

K is destabilizing

state-space

29

Proof Idea: “Catch 22”

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system x,. ; = A;x, + u, and associated linear control policies 7,(x) = K;x s.t.

If u = Kx agrees with data on ¢, ”
e EE— 2

K is destabilizing

state-space

€1

Learned policies cannot both follow the expert and stabilize unknown dynamics

29

Proof Idea: ‘Catch 22’

)

X1 = A+ iy,

K destabilizing

state-space
€1

7 —

30

Proof Idea: ‘Catch 22’

)

X1 = A+ iy,

K destabilizing

state-space
€1

7 a—

Step 2: Carefully embed a nonparametric learning problem as a source of original
error, which becomes amplified by dynamical instability.

30

Proof Idea: ‘Catch 22’

)

X1 = A+ iy,

K destabilizing

state-space
€1

7 —

Step 2: Carefully embed a nonparametric learning problem as a source of original
error, which becomes amplified by dynamical instability.

Note: This does not arise in the classical bound due to absence of “metric” error

30

Proof Idea: ‘Catch 22’

K is destabilizing

Sstate-space

31

Proof Idea: ‘Catch 22’

K is destabilizing

Sstate-space

€1

Learned policies cannot both follow the expert and stabilize unknown dynamics

31

Proof Idea: ‘Catch 22’

K is destabilizing

Sstate-space

€1

/ -

”

Learned policies cannot both follow the expert and stabilize unknown dynamics

Because the Physical World & involves “perturbative error,”
pushing us out of distribution, learning can be much harder!

31

Act 3: “What to do about it?”

w/ Thomas Zhang, Daniel Pfrommer, Nikolai Matni (UPenn+MIT)

32

The Caveat

The Caveat

While the negative result holds if dynamics are unstable, it only
applies to stable dynamics if 7 is a “simple policy”

33

The Caveat

While the negative result holds if dynamics are unstable, it only
applies to stable dynamics if 7 is a “simple policy”

note: expert is also ‘simple’

33

The Caveat

While the negative result holds if dynamics are unstable, it only
applies to stable dynamics if 7 is a “simple policy”

note: expert is also ‘simple’

Unlike language pertaining, naive imitation does not work.
However, better policy representation + better data can
overcome the challenges of physical world learning .

33

Action Chunking

Action Chunking

Definition: Action Chunking is the practice of predicting a sequence of k > 1
inputs (¢, U,, ..., 4;) at a time, and committing to them.

34

Action Chunking

Definition: Action Chunking is the practice of predicting a sequence of k > 1
inputs (¢, U,, ..., 4;) at a time, and committing to them.

One of the most essential practices in modern robotics, but hitherto mysterious.

34

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

independent of horizon!

35

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

36

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

spiral out of control.

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

Proof: By updating the policy rarely, you leverage passive stability of dynamics.

37

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

Proof: By updating the policy rarely, you leverage passive stability of dynamics.

Sstate-space

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

Proof: By updating the policy rarely, you leverage passive stability of dynamics.

Sstate-space

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

Proof: By updating the policy rarely, you leverage passive stability of dynamics.

Sstate-space k’

open-loop (‘passively’) stable ¢

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

(x.v) Position As a Function of Time
¢

Vv position

-X P sition -

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

(x.v) Position As a Function of Time
¢

Vv position

-X P sition -

But what about unstable dynamics?

Ayl = i (xt’ ut) f‘ ‘w

Inverted Pendulum
unstable

39

But what about unstable dynamics?

Inverted Pendulum
unstable

“critical moment”

39

But what about unstable dynamics?

: | $0
l/tt d

-
\
>,

o

“critical moment”

~

pivot

Inverted Pendulum
unstable

Theorem (SPJ): Given only expert demonstration data, no algorithm (no
matter how clever!) can imitate without exponential compounding error.

The power of data augmentation.

40

The power of data augmentation.

40

The power of data augmentation.

Theorem: If the expert policies collects trajectories as 1 = 7" (x) + noise, but

provides ('™, x) = (7*(x), u) as training data, we can efficiently learning in

unstable dynamics.

&4
¢

A 4

40

The power of data augmentation.

Theorem: If the expert policies collects trajectories as 1 = 7" (x) + noise, but

provides ('™, x) = (7*(x), u) as training data, we can efficiently learning in

unstable dynamics.

&{
¢

A 4

40 *DART algorithm, Laskey et. 2017

The power of data augmentation.

Theorem: If the expert policies collects trajectories as 1 = 7" (x) + noise, but

provides ('™, x) = (7*(x), u) as training data, we can efficiently learning in

unstable dynamics.

40 *DART algorithm, Laskey et. 2017

The power of data augmentation.

Theorem: If the expert policies collects trajectories as 1 = 7" (x) + noise, but

provides ('™, x) = (7*(x), u) as training data, we can efficiently learning in

unstable dynamics.

40 *DART algorithm, Laskey et. 2017

In summary

41

In summary

Unlike language pertaining, naive imitation does not work.
However, better policy representation + better data can
overcome the challenges of physical world learning .

41

In summary

Unlike language pertaining, naive imitation does not work.
However, better policy representation + better data can
overcome the challenges of physical world learning .

Many pathologies in the Physical World & come from
incomplete knowledge of system dynamics.

41

Conclusion: Where next for Physical AI?

Exploration + World Modeling

Exploration + World Modeling

Many pathologies in the Physical World & come from
incomplete knowledge of system dynamics.

43

Exploration + World Modeling

Many pathologies in the Physical World & come from
incomplete knowledge of system dynamics.

DPPO: Diffusion Policy Policy Optimization

N\ ()

4 Environment MDP Poli
Vlog ﬂe(al{f_l |ak, s) oucy

Diffusion l l Diffusion [~ ol Gradient
[MDP MDP J_DF J_ . Update
. J

_ J

43
Allen Ren et al. 24

Exploration + World Modeling

Many pathologies in the Physical World & come from
incomplete knowledge of system dynamics.

DPPO: Diffusion Policy Policy Optimization

~

Environment MDP
Volog m(af~" | af, s,)

f
Policy

=) (5

Allen Ren et al. 24

~

Gradient

Update
AN

Next-token prediction

Diffusion Forcing

Full-Sequence Diffusion

J

43

Boyuan Chen et al 24

Ps)

Andrej Risteski

Ameet Talwalkar Nick Boffi

\
ey R R

@CMU

(=l

=

Q) |{~
\

W

: : II
| | | !
x |
{al
i 8 A= -
i . Yo 111111
: p | FA B R
| &1 f Gl L5
.
e——— =——
1 = = —
ho d
7 A :
A ”
I L -

