
Max Simchowitz CMU

Why AI is harder in the Physical
World 🤖

… and what to maybe do about it

1

2

Why are we working on AI?

2

Why are we working on AI?

“Vision of the Future” - Family Guy™

2

Why are we working on AI?

“Vision of the Future” - Family Guy™

SOTA March 2020

2

3

AI in the Physical World 🤖

3

AI in the Physical World 🤖

3

AI in the Physical World 🤖

3

AI in the Physical World 🤖

3

AI in the Physical World 🤖

3

The Physical World 🤖 v.s. The Discrete World 📚

4

The Physical World 🤖 v.s. The Discrete World 📚

4

The Physical World 🤖 v.s. The Discrete World 📚

action ut

state xt

dynamics
policy xt+1 = f(xt, ut)ut = π(xt)

4

The Physical World 🤖 v.s. The Discrete World 📚

token xt+1

context x1:t

concat.LLM

action ut

state xt

dynamics
policy xt+1 = f(xt, ut)ut = π(xt)

4

The Physical World 🤖 v.s. The Discrete World 📚

action ut

state xt

dynamics
policy xt+1 = f(xt, ut)ut = π(xt)

5

The Physical World 🤖 v.s. The Discrete World 📚

action ut

state xt

dynamics
policy xt+1 = f(xt, ut)ut = π(xt)

1. Beholden to external dynamics

2. States and actions take continuous
values

5

Pre-training in LLMs 📚 is Imitation

6

Pre-training in LLMs 📚 is Imitation

(source: Wikipedia)

6

Pre-training in LLMs 📚 is Imitation

We treat natural human language as an
expert demonstrator which we aim to
imitate.

(source: Wikipedia)

6

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

7

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

7

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

We treat use a human expert
demonstrator which we aim to imitate.

7

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

We treat use a human expert
demonstrator which we aim to imitate.

Our aim is to predict a “next action” (robot action) from observation (pixels, tactile sensing.)7

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

8

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

8

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

How is imitation (e.g. pretraining) different in the physical
v.s. discrete settings?

8

This Talk.

9

This Talk.

9

1. Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

This Talk.

9

1. Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

This Talk.

9

1. Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

2. Demonstrate how imitation is considerably more challenging in
the physical world 🤖 than in the discrete world 📚.

This Talk.

9

1. Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

2. Demonstrate how imitation is considerably more challenging in
the physical world 🤖 than in the discrete world 📚.

This Talk.

9

1. Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

2. Demonstrate how imitation is considerably more challenging in
the physical world 🤖 than in the discrete world 📚.

3. Explain that that popular design decisions from today’s world of
robotics are not just helpful, but indispensable.

This Talk.

9

(this is a theory talk)

1. Introduce a formal setting of imitation learning (motivated by
robotic pretraining).

2. Demonstrate how imitation is considerably more challenging in
the physical world 🤖 than in the discrete world 📚.

3. Explain that that popular design decisions from today’s world of
robotics are not just helpful, but indispensable.

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

10

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

10

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

Collect n expert trajectories . (x1:H, u1:H) ∼ ℙπ⋆

10

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

Collect n expert trajectories . (x1:H, u1:H) ∼ ℙπ⋆

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]

10

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

Collect n expert trajectories . (x1:H, u1:H) ∼ ℙπ⋆

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost

10

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

Collect n expert trajectories . (x1:H, u1:H) ∼ ℙπ⋆

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator

10

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

Collect n expert trajectories . (x1:H, u1:H) ∼ ℙπ⋆

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

10

Imitation in the Physical World 🤖

action ut

state xt

xt+1 = f(xt, ut)ut = π(xt)

Collect n expert trajectories . (x1:H, u1:H) ∼ ℙπ⋆

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]

“Horizon” H

excess cost cost under imitator cost under expert

10

Example Algorithm: Behavior Cloning.

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2 (is deterministic)π⋆

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Example 2: loss(π, x, u) = 1π(x)=u

(is deterministic)π⋆

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Example 2: loss(π, x, u) = 1π(x)=u (is discrete)π⋆

(is deterministic)π⋆

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Example 2: loss(π, x, u) = 1π(x)=u (is discrete)π⋆

(is deterministic)π⋆

Example 3: loss(π, x, u) = log π(u ∣ x)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Example 2: loss(π, x, u) = 1π(x)=u (is discrete)π⋆

(is deterministic)π⋆

Example 3: loss(π, x, u) = log π(u ∣ x) (is discrete, or has density)π⋆ π⋆(x)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Example 2: loss(π, x, u) = 1π(x)=u (is discrete)π⋆

(is deterministic)π⋆

Example 3: loss(π, x, u) = log π(u ∣ x) (is discrete, or has density)π⋆ π⋆(x)

Example 4: loss(π, x, u) = (Score Matching)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Example 1: loss(π, x, u) = ∥u − π(x)∥2

Example 2: loss(π, x, u) = 1π(x)=u (is discrete)π⋆

(is deterministic)π⋆

Example 3: loss(π, x, u) = log π(u ∣ x) (is discrete, or has density)π⋆ π⋆(x)

Example 4: loss(π, x, u) = (Score Matching) (popular in robotics)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

11

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

12

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

Compare to ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

loss of imitator under expert distribution

12

Example Algorithm: Behavior Cloning.

The Behavior Cloning Algorithm: ̂π ≈ arg min
π

∑(x,u)∈expert data loss(π, x, u)

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

Compare to ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

loss of imitator under expert distribution

This can be minimized with pure supervised learning 12

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

Compare to ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

loss of imitator under expert distribution

13

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

Compare to ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

loss of imitator under expert distribution

The gap between these two is called the compounding error problem.

13

The Compounding Error Problem.

14

The Compounding Error Problem.

 ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

14

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

π⋆ : 𝒳 → 𝒰

 ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

14

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1)

π⋆ : 𝒳 → 𝒰

 ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

14

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1)

̂u2

π⋆ : 𝒳 → 𝒰

 ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

14

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1)

̂u2

π⋆ : 𝒳 → 𝒰

 ℛexpert(̂π; π⋆) = 𝔼π⋆[∑H
h=1 loss(̂π, π⋆, ut)]

14

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

π⋆ : 𝒳 → 𝒰

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

15

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

π⋆ : 𝒳 → 𝒰

Learner Trajectory ̂π : 𝒳 → 𝒰

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

15

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1) ̂x2

π⋆ : 𝒳 → 𝒰

Learner Trajectory ̂π : 𝒳 → 𝒰

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

15

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1) ̂x2

̂u2
̂x3

π⋆ : 𝒳 → 𝒰

Learner Trajectory ̂π : 𝒳 → 𝒰

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

15

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1) ̂x2

̂u2
̂x3

̂xT+1

π⋆ : 𝒳 → 𝒰

Learner Trajectory ̂π : 𝒳 → 𝒰

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

15

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1) ̂x2

̂u2
̂x3

̂xT+1

π⋆ : 𝒳 → 𝒰

Learner Trajectory ̂π : 𝒳 → 𝒰 Challenge A: Error accumulates over time steps,
larger with larger H.

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

15

The Compounding Error Problem.

Expert Trajectory

x⋆
1 = ̂x1 = x1

x⋆
2

u⋆
1 = π⋆(x1)

u⋆
2

x⋆
3

x⋆
τ+1

̂u1 = ̂π(̂x1) ̂x2

̂u2
̂x3

̂xT+1

π⋆ : 𝒳 → 𝒰

Learner Trajectory ̂π : 𝒳 → 𝒰 Challenge A: Error accumulates over time steps,
larger with larger H.

Challenge B: After error has accumulated, we
are now out of distribution.

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

15

Compounding In the Discrete World 📚

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

16

Compounding In the Discrete World 📚

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

16

Compounding In the Discrete World 📚

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

16

Compounding In the Discrete World 📚

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

16

Compounding In the Discrete World 📚

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

probabilistic errors accumulate at most linearly.

16

Compounding In the Discrete World 📚

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

probabilistic errors accumulate at most linearly.

Theorem: If is the zero-one loss,
and that is bounded in [0,1]. Then, for all

loss(π, x, u) = 1π(x)=u
c(x, u) (̂π; π⋆)

ℛc(̂π; π⋆) ≤ H ⋅ ℛexpert(̂π; π⋆)

16

Compounding In the Discrete World 📚

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

probabilistic errors accumulate at most linearly. Improvements due to Foster et al. ’24 for the Log Loss.

Theorem: If is the zero-one loss,
and that is bounded in [0,1]. Then, for all

loss(π, x, u) = 1π(x)=u
c(x, u) (̂π; π⋆)

ℛc(̂π; π⋆) ≤ H ⋅ ℛexpert(̂π; π⋆)

16

Compounding In the Discrete World 📚

Mininimize ℛc(̂π; π⋆) = 𝔼 ̂π[∑H
h=1 c(xt, ut)]−𝔼π⋆[∑H

h=1 c(xt, ut)]
excess cost cost under imitator cost under expert

Theorem: If is the zero-one loss,
and that is bounded in [0,1]. Then, for all

loss(π, x, u) = 1π(x)=u
c(x, u) (̂π; π⋆)

ℛc(̂π; π⋆) ≤ H ⋅ ℛexpert(̂π; π⋆)

Crucially relies probabilistic errors + discreteness of actions!
17

Compounding in Physical World 🤖?

18

Compounding in Physical World 🤖?

18

Compounding in Physical World 🤖?

📚 Limited Compounding w/
Probabilistic Error?

18

Compounding in Physical World 🤖?

📚 Limited Compounding w/
Probabilistic Error?

Expert Trajectory

Learner Trajectory

18

Compounding in Physical World 🤖?

📚 Limited Compounding w/
Probabilistic Error?

Expert Trajectory

Learner Trajectory

Perturbative Error! 🤖

18

Compounding in Physical World 🤖?

📚 Limited Compounding w/
Probabilistic Error?

Expert Trajectory

Learner Trajectory

Sometime much worse?
Perturbative Error! 🤖

18

Act 2: “Learning in the Physical World is
Harder”

w/ Daniel Pfrommer, Ali Jadbabaie (MIT).

19

An Informal Theorem 🤖

20

An Informal Theorem 🤖

action

state

dynamics
policy

20

Assumptions: “Things are nice”

An Informal Theorem 🤖

action

state

dynamics
policy

20

Assumptions: “Things are nice”

An Informal Theorem 🤖

1. dynamics + policy are smooth+deterministic

action

state

dynamics
policy

20

Assumptions: “Things are nice”

An Informal Theorem 🤖

1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

action

state

dynamics
policy

20

Assumptions: “Things are nice”

An Informal Theorem 🤖

1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

action

state

dynamics
policy

20

Assumptions: “Things are nice”

An Informal Theorem 🤖

1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

Takeaway: learning in the physical world 🤖 can
be hard even if the problems seems benign

action

state

dynamics
policy

20

An Informal Theorem 🤖

action

state

dynamics
policy

Assumptions: “Things are nice”
1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

21

An Informal Theorem 🤖

action

state

dynamics
policy

Assumptions: “Things are nice”
1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems where:ϵ(n) ∝ n−k

21

An Informal Theorem 🤖

action

state

dynamics
policy

Assumptions: “Things are nice”
1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems where:ϵ(n) ∝ n−k

Expert Error ℛexpert(̂π; π⋆) ≤ ϵ(n)

21

An Informal Theorem 🤖

action

state

dynamics
policy

Assumptions: “Things are nice”
1. dynamics + policy are smooth+deterministic

2. cost function is smooth and bounded.

3. dynamics are stable.

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems where:ϵ(n) ∝ n−k

Cost ℛc(̂π; π⋆) ≳ min {2Hϵ(n), 1}Expert Error ℛexpert(̂π; π⋆) ≤ ϵ(n)

21

An Informal Theorem 🤖

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems s.t.:ϵ(n) ∝ n−k

Cost ℛc(̂π; π⋆) ≳ min {2Hϵ(n), 1}Expert Error ℛexpert(̂π; π⋆) ≤ ϵ(n)

22

An Informal Theorem 🤖

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems s.t.:ϵ(n) ∝ n−k

Cost ℛc(̂π; π⋆) ≳ min {2Hϵ(n), 1}Expert Error ℛexpert(̂π; π⋆) ≤ ϵ(n)

Behavior Cloning achieve this!

22

An Informal Theorem 🤖

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems s.t.:ϵ(n) ∝ n−k

Cost ℛc(̂π; π⋆) ≳ min {2Hϵ(n), 1}Expert Error ℛexpert(̂π; π⋆) ≤ ϵ(n)

Behavior Cloning achieve this! Any* algorithm using expert data suffers.

22

An Informal Theorem 🤖

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems s.t.:ϵ(n) ∝ n−k

Cost ℛc(̂π; π⋆) ≳ min {2Hϵ(n), 1}Expert Error ℛexpert(̂π; π⋆) ≤ ϵ(n)

Behavior Cloning achieve this! Any* algorithm using expert data suffers.

Including: inverse RL and offline RL!

22

An Informal Theorem 🤖

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems s.t.:ϵ(n) ∝ n−k

Cost ℛc(̂π; π⋆) ≳ min {2Hϵ(n), 1}Expert Error ℛexpert(̂π; π⋆) ≤ ϵ(n)

Behavior Cloning achieve this! Any* algorithm using expert data suffers.

Including: inverse RL and offline RL!

Exponential worse that if 📚ℛc(̂π; π⋆) ≤ H ⋅ ϵ(n)
22

An Informal Theorem 🤖

Theorem (SPJ): Let n be the number of expert trajectories. For any
, there exists a family of nice behavior cloning problems s.t.:ϵ(n) ∝ n−k

Cost ℛc(̂π; π⋆) ≳ min {2Hϵ(n), 1}Expert Error ℛexpert(̂π; π⋆) ≤ ϵ(n)

Behavior Cloning achieve this! Any* algorithm using expert data suffers.

Including: inverse RL and offline RL!

Exponential worse that if 📚ℛc(̂π; π⋆) ≤ H ⋅ ϵ(n)
*Caveat for the end…..22

Control Theoretic Stability 🤸

23

Control Theoretic Stability 🤸

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

23

Control Theoretic Stability 🤸

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

unstablestable

23

Control Theoretic Stability 🤸

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

unstablestable

naturally related to compounding error.

23

Control Theoretic Stability 🤸

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

unstablestable
Expert

Learner

naturally related to compounding error.

23

Control Theoretic Stability 🤸

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

unstablestable

24

Control Theoretic Stability 🤸

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

unstablestable

Definition: Dynamics are
-stable if, for same initial condition

xt+1 = f(xt, ut) (C, ρ)
x1=x′ 1

∥x′ t+1−x′ t+1∥ ≤ C∑
s≤t

ρt−s∥us−u′ s∥

24

Control Theoretic Stability 🤸

Definition (Informal): A dynamical system is
said to be stable if it has limited sensitivity to
perturbations of input.

unstablestable

Definition: Dynamics are
-stable if, for same initial condition

xt+1 = f(xt, ut) (C, ρ)
x1=x′ 1

∥x′ t+1−x′ t+1∥ ≤ C∑
s≤t

ρt−s∥us−u′ s∥

 = exponentially quick forgetting of mistakesρ ∈ (0,1)
24

Control Theoretic Stability 🤸 stable

25

Control Theoretic Stability 🤸

We assume that the following are stable(C, ρ)

stable

25

Control Theoretic Stability 🤸

We assume that the following are stable(C, ρ)

1. “open loop” (x, u) → f(x, u)

stable

25

Control Theoretic Stability 🤸

We assume that the following are stable(C, ρ)

1. “open loop” (x, u) → f(x, u)

xt+1 = f(xt, ut)
xtut

x′ tu′ t

open-loop stable

stable

25

Control Theoretic Stability 🤸

We assume that the following are stable(C, ρ)

1. “open loop” (x, u) → f(x, u)
2. “closed loop” (x, u) → f(x, π⋆(x) + u)

xt+1 = f(xt, ut)
xtut

x′ tu′ t

open-loop stable

stable

25

Control Theoretic Stability 🤸

We assume that the following are stable(C, ρ)

1. “open loop” (x, u) → f(x, u)
2. “closed loop” (x, u) → f(x, π⋆(x) + u)

xt+1 = f(xt, ut)
xtut

x′ tu′ t

open-loop stable

stable

closed-loop stablext+1 = f(xt, ut)u = π⋆(x)

25

This is surprising.

We assume that the following are stable(C, ρ)

1. “open loop” (x, u) → f(x, u)
2. “closed loop” (x, u) → f(x, π⋆(x) + u)

stable

26

This is surprising.

Recall error compound exponentially ℛc(̂π; π⋆) ≳ 2H ⋅ ℛexpert(̂π; π⋆)

We assume that the following are stable(C, ρ)

1. “open loop” (x, u) → f(x, u)
2. “closed loop” (x, u) → f(x, π⋆(x) + u)

stable

26

This is surprising.

Recall error compound exponentially ℛc(̂π; π⋆) ≳ 2H ⋅ ℛexpert(̂π; π⋆)

But dynamics forget mistakes exponentially quickly

We assume that the following are stable(C, ρ)

1. “open loop” (x, u) → f(x, u)
2. “closed loop” (x, u) → f(x, π⋆(x) + u)

stable

26

This is surprising.

Recall error compound exponentially ℛc(̂π; π⋆) ≳ 2H ⋅ ℛexpert(̂π; π⋆)

But dynamics forget mistakes exponentially quickly

stable

27

This is surprising.

Recall error compound exponentially ℛc(̂π; π⋆) ≳ 2H ⋅ ℛexpert(̂π; π⋆)

But dynamics forget mistakes exponentially quickly

stable

27

Takeaway: learning in the physical world 🤖 can
be hard even if the problems seems benign

The Catch.
stable

xt+1 = f(xt, ut)
xtut

x′ tu′ t

xt+1 = f(xt, ut)u = π⋆(x)

28

The Catch.
stable

xt+1 = f(xt, ut)
xtut

x′ tu′ t

xt+1 = f(xt, ut)u = π⋆(x)

xt+1 = f(xt, ut)u = ̂π(x)

28

The Catch.
stable

xt+1 = f(xt, ut)
xtut

x′ tu′ t

xt+1 = f(xt, ut)u = π⋆(x)

xt+1 = f(xt, ut)u = ̂π(x)

28 unstable

29

Proof Idea: “Catch 22”

29

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system and associated linear control policies s.t.xt+1 = Aixt + ut πi(x) = Kix

Proof Idea: “Catch 22”

29

e2

e1
state-space

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system and associated linear control policies s.t.xt+1 = Aixt + ut πi(x) = Kix

Proof Idea: “Catch 22”

29

e2

e1
state-space

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system and associated linear control policies s.t.xt+1 = Aixt + ut πi(x) = Kix

Proof Idea: “Catch 22”

29

e2

e1
state-space

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system and associated linear control policies s.t.xt+1 = Aixt + ut πi(x) = Kix

If agrees with data on u = K̂x e2

Proof Idea: “Catch 22”

29

e2

e1
state-space

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system and associated linear control policies s.t.xt+1 = Aixt + ut πi(x) = Kix

If agrees with data on u = K̂x e2

Proof Idea: “Catch 22”

29

e2

e1
state-space

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system and associated linear control policies s.t.xt+1 = Aixt + ut πi(x) = Kix

If agrees with data on u = K̂x e2

Proof Idea: “Catch 22”

29

e2

e1
state-space

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system and associated linear control policies s.t.xt+1 = Aixt + ut πi(x) = Kix

If agrees with data on u = K̂x e2 is destabilizingK̂

Proof Idea: “Catch 22”

29

e2

e1
state-space

Step 1: Lower Bound for Linear Systems. There exists a pair of 2 dimensional linear
dynamical system and associated linear control policies s.t.xt+1 = Aixt + ut πi(x) = Kix

If agrees with data on u = K̂x e2 is destabilizingK̂

Proof Idea: “Catch 22”

29

Learned policies cannot both follow the expert and stabilize unknown dynamics

e2

e1

state-spacex1x0

xt+1 = Aixt + ut

 destabilizingK̂

Proof Idea: ‘Catch 22’

30

e2

e1

state-spacex1x0

xt+1 = Aixt + ut

 destabilizingK̂

Step 2: Carefully embed a nonparametric learning problem as a source of original
error, which becomes amplified by dynamical instability.

Proof Idea: ‘Catch 22’

30

e2

e1

state-spacex1x0

xt+1 = Aixt + ut

 destabilizingK̂

Step 2: Carefully embed a nonparametric learning problem as a source of original
error, which becomes amplified by dynamical instability.

Note: This does not arise in the classical bound due to absence of “metric” error

Proof Idea: ‘Catch 22’

30

Proof Idea: ‘Catch 22’

e2

e1
state-space

 is destabilizingK̂

31

Proof Idea: ‘Catch 22’

Learned policies cannot both follow the expert and stabilize unknown dynamics

e2

e1
state-space

 is destabilizingK̂

31

Proof Idea: ‘Catch 22’

Learned policies cannot both follow the expert and stabilize unknown dynamics

Because the Physical World 🤖 involves “perturbative error,”
pushing us out of distribution, learning can be much harder!

e2

e1
state-space

 is destabilizingK̂

31

Act 3: “What to do about it?”

w/ Thomas Zhang, Daniel Pfrommer, Nikolai Matni (UPenn+MIT)

32

The Caveat

33

The Caveat
While the negative result holds if dynamics are unstable, it only
applies to stable dynamics if is a “simple policy”̂π

33

The Caveat
While the negative result holds if dynamics are unstable, it only
applies to stable dynamics if is a “simple policy”̂π

 + ̂π(x) = πdeterm(x) (independent noise)
note: expert is also ‘simple’

33

The Caveat

Unlike language pertaining, naive imitation does not work.
However, better policy representation + better data can
overcome the challenges of physical world learning 🤖.

While the negative result holds if dynamics are unstable, it only
applies to stable dynamics if is a “simple policy”̂π

 + ̂π(x) = πdeterm(x) (independent noise)
note: expert is also ‘simple’

33

Action Chunking

34

Action Chunking
Definition: Action Chunking is the practice of predicting a sequence of
inputs at a time, and committing to them.

k ≥ 1
(u1, u2, …, uk)

34

Action Chunking
Definition: Action Chunking is the practice of predicting a sequence of
inputs at a time, and committing to them.

k ≥ 1
(u1, u2, …, uk)

One of the most essential practices in modern robotics, but hitherto mysterious.

34

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

35

independent of horizon!

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

36

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

Proof Idea: recall that, without action chunking,

xt+1 = f(xt, ut)u = ̂π(x)
spiral out of control.

36

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

Proof: By updating the policy rarely, you leverage passive stability of dynamics.

37

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

Proof: By updating the policy rarely, you leverage passive stability of dynamics.

e2

e1
state-space

37

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

Proof: By updating the policy rarely, you leverage passive stability of dynamics.

e2

e1
state-space

37

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

Proof: By updating the policy rarely, you leverage passive stability of dynamics.

e2

e1
state-space

open-loop (‘passively’) stable37

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

What We Get from Action Chunking

Theorem (ZPMS): Given an open-loop stable system, there exists a fixed k such
that (independent of data amount n), s.t. k-action chunking gives

 ℛc(̂π; π⋆) ≤ Csys ℛexpert(̂π; π⋆)

But what about unstable dynamics?

xt+1 = f(xt, ut)
xtut

x′ tu′ t

unstable

39

But what about unstable dynamics?

xt+1 = f(xt, ut)
xtut

x′ tu′ t

unstable
“critical moment”

39

But what about unstable dynamics?

xt+1 = f(xt, ut)
xtut

x′ tu′ t

unstable
“critical moment”

Theorem (SPJ): Given only expert demonstration data, no algorithm (no
matter how clever!) can imitate without exponential compounding error.

39

The power of data augmentation.

xt+1 = f(xt, ut)

40

The power of data augmentation.

xt+1 = f(xt, ut)

40

The power of data augmentation.
Theorem: If the expert policies collects trajectories as , but
provides as training data, we can efficiently learning in
unstable dynamics.

u = π⋆(x) + noise
(uclean, x) = (π⋆(x), u)

xt+1 = f(xt, ut)

40

The power of data augmentation.
Theorem: If the expert policies collects trajectories as , but
provides as training data, we can efficiently learning in
unstable dynamics.

u = π⋆(x) + noise
(uclean, x) = (π⋆(x), u)

xt+1 = f(xt, ut)

*DART algorithm, Laskey et. 201740

The power of data augmentation.
Theorem: If the expert policies collects trajectories as , but
provides as training data, we can efficiently learning in
unstable dynamics.

u = π⋆(x) + noise
(uclean, x) = (π⋆(x), u)

xt+1 = f(xt, ut)

*DART algorithm, Laskey et. 201740

The power of data augmentation.
Theorem: If the expert policies collects trajectories as , but
provides as training data, we can efficiently learning in
unstable dynamics.

u = π⋆(x) + noise
(uclean, x) = (π⋆(x), u)

xt+1 = f(xt, ut)

*DART algorithm, Laskey et. 201740

In summary

41

In summary

Unlike language pertaining, naive imitation does not work.
However, better policy representation + better data can
overcome the challenges of physical world learning 🤖.

41

In summary

Unlike language pertaining, naive imitation does not work.
However, better policy representation + better data can
overcome the challenges of physical world learning 🤖.

41

Many pathologies in the Physical World 🤖 come from
incomplete knowledge of system dynamics.

Conclusion: Where next for Physical AI?

42

Exploration + World Modeling

43

Exploration + World Modeling

43

Many pathologies in the Physical World 🤖 come from
incomplete knowledge of system dynamics.

Exploration + World Modeling

43

Many pathologies in the Physical World 🤖 come from
incomplete knowledge of system dynamics.

VLM

What did I leave on the sofa? A) Hat
B) Backpack C) Laptop D) Jacket

Semantic
values

Semantic-value-weighted
Exploration

(x, y, yaw) Next Pose

New Observation

Semantic map

A - 0.28
B - 0.17
C - 0.12
D - 0.43

Stop?
Answer

prediction

Question-Image
relevance

0.10 1.72
0.98
0.59

(3)

(1)

(2)

Initial

Goal

Node 1 is connected to 2, 3
Node 2 is connected to 1, 2, 3, 5
….
Node 7 is connected to 6

Initial: 2
Goal: 7

Graph Planning

Plan the shortest path from
initial to goal

Forward planning

Plan the shortest path from
goal to initial

Backward planning

[0, 3, 1, 4]

[4, 1, 3, 0]

Array Transformation

reverse

[3, 1, 4, 0]shift_left

...

[1, 3, 0, 4]shift_left

swap [0, 1, 4, 3]

[0, 4, 1, 3]reverse

Blocksworld
Initial:

Orange on blue,
yellow on red

Goal:
Orange on red

DPPO: Diǒusion Policy Policy Optimization

Structured exploration Training stability Policy robustness

Environment MDP

Diffusion
MDP

Diffusion
MDP

DPPO: Diffusion Policy Policy Optimization

Structured exploration Training stability Policy robustness

Environment MDP

Diffusion
MDP

Diffusion
MDP

Diffusion
MDP

Diffusion
MDP

Policy
Gradient
Update

Allen Ren et al. ‘24

Exploration + World Modeling

43

Many pathologies in the Physical World 🤖 come from
incomplete knowledge of system dynamics.

VLM

What did I leave on the sofa? A) Hat
B) Backpack C) Laptop D) Jacket

Semantic
values

Semantic-value-weighted
Exploration

(x, y, yaw) Next Pose

New Observation

Semantic map

A - 0.28
B - 0.17
C - 0.12
D - 0.43

Stop?
Answer

prediction

Question-Image
relevance

0.10 1.72
0.98
0.59

(3)

(1)

(2)

Initial

Goal

Node 1 is connected to 2, 3
Node 2 is connected to 1, 2, 3, 5
….
Node 7 is connected to 6

Initial: 2
Goal: 7

Graph Planning

Plan the shortest path from
initial to goal

Forward planning

Plan the shortest path from
goal to initial

Backward planning

[0, 3, 1, 4]

[4, 1, 3, 0]

Array Transformation

reverse

[3, 1, 4, 0]shift_left

...

[1, 3, 0, 4]shift_left

swap [0, 1, 4, 3]

[0, 4, 1, 3]reverse

Blocksworld
Initial:

Orange on blue,
yellow on red

Goal:
Orange on red

DPPO: Diǒusion Policy Policy Optimization

Structured exploration Training stability Policy robustness

Environment MDP

Diffusion
MDP

Diffusion
MDP

DPPO: Diffusion Policy Policy Optimization

Structured exploration Training stability Policy robustness

Environment MDP

Diffusion
MDP

Diffusion
MDP

Diffusion
MDP

Diffusion
MDP

Policy
Gradient
Update

Allen Ren et al. ‘24

Boyuan Chen et al ‘24

Generative Engineering, Mathematics, Science (💎s)

Ameet Talwalkar Nick Boffi Andrej Risteski

@CMU

